Food acquisition is a fundamental process that drives animal distribution and abundance, influencing how species respond to changing environments. Disturbances such as fire create significant shifts in available dietary resources, yet, for many species, we lack basic information about what they eat, let alone how they respond to a changing resource base. In order to create effective management strategies, faunal conservation in flammable landscapes requires a greater understanding of what animals eat and how this change following a fire. What animals eat in postfire environments has received little attention due to the time-consuming methodologies and low-resolution identification of food taxa. Recently, molecular techniques have been developed to identify food DNA in scats, making it possible to identify animal diets with enhanced resolution. The primary aim of this study was to utilize eDNA metabarcoding to obtain an improved understanding of the diet of three native Australian small mammal species: yellow-footed antechinus (), heath mouse (), and bush rat (). Specifically, we sought to understand the difference in the overall diet of the three species and how diet changed over time after fire. Yellow-footed antechinus diets mostly consisted of moths, and plants belonging to myrtles and legume families while bush rats consumed legumes, myrtles, rushes, and beetles. Heath mouse diet was dominated by rushes. All three species shifted their diets over time after fire, with most pronounced shifts in the bush rats and least for heath mice. Identifying critical food resources for native animals will allow conservation managers to consider the effect of fire management actions on these resources and help conserve the species that use them.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643072 | PMC |
http://dx.doi.org/10.1002/ece3.9457 | DOI Listing |
Biodivers Data J
January 2025
Dynafor, INRAE, INP, ENSAT, 31326, Castanet Tolosan, France Dynafor, INRAE, INP, ENSAT, 31326 Castanet Tolosan France.
Background: DNA barcoding and metabarcoding are now powerful tools for studying biodiversity and especially the accurate identification of large sample collections belonging to diverse taxonomic groups. Their success depends largely on the taxonomic resolution of the DNA sequences used as barcodes and on the reliability of the reference databases. For wild bees, the barcode sequences coverage is consistently growing in volume, but some incorrect species annotations need to be cared for.
View Article and Find Full Text PDFHeliyon
July 2024
Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.
The pulp and paper industry, a major global sector, supports economies and jobs while contributing to various products. While providing valuable products, and despite Best Available Techniques (BAT) being used, managing wastewater effectively remains a key area for developing technologies and alternatives for environmental protection. Activated sludge (AS) systems are commonly used for effluent treatment, where microorganisms composition influences reactor efficiency.
View Article and Find Full Text PDFNat Commun
January 2025
Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany.
During the Pleistocene-Holocene transition, the dominant mammoth steppe ecosystem across northern Eurasia vanished, in parallel with megafauna extinctions. However, plant extinction patterns are rarely detected due to lack of identifiable fossil records. Here, we introduce a method for detection of plant taxa loss at regional (extirpation) to potentially global scale (extinction) and their causes, as determined from ancient plant DNA metabarcoding in sediment cores (sedaDNA) from lakes in Siberia and Alaska over the past 28,000 years.
View Article and Find Full Text PDFSci Total Environ
January 2025
Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; IBED, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, the Netherlands.
Microb Ecol
January 2025
Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.
Posidonia oceanica retains a large amount of carbon within its belowground recalcitrant structure, the 'matte,' which is characterized by low oxygen availability and biodegradation. Fungi may play a pivotal role in carbon sequestration within the matte, even if little/no information is available. To fill this gap, we profiled fungal communities from the upper and lower layers of alive and dead matte, by using an ITS2-5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!