Production of a Novel Multi-Epitope Peptide Vaccine against Hepatocellular Carcinoma.

Iran J Med Sci

Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.

Published: November 2022

Background: Hepatocellular carcinoma (HCC) is one of the prevalent cancers in the world with a high recurrence rate. In recent years, different researches have focused on designing efficient multi-epitope peptide vaccines against HCC. In designing these vaccines, over-expressed antigens in HCC patients, such as α- fetoprotein (AFP) and glypican-3 (GPC-3), have been employed. In our previous study, a multi-epitope peptide vaccine for HCC was designed by methods. The designed vaccine construct included the AFP, GPC-3, and aspartyl-β-hydroxylase (ASPH) as CytoLoxic T cell Lymphocytes (CTL), one epitope from Tetanus Toxin Fragment C (TTFrC) as Helper T cell Lymphocytes (HTL), and a segment of microbial heat shock protein (HSP70) peptide as an adjuvant. All the mentioned parts were connected by appropriate linkers. The aim of this study is the production of the designed vaccine.

Methods: This research is experimental and was carried out in Fasa, Iran, in 2017. The designed vaccine construct gene was transformed to the BL21 (DE3) strain and expressed in different isopropyl β-D-1-thiogalactopyranoside (IPTG) concentrations (0.6 and 1 mM), times (4, 6, 8, 16 hours), and temperatures (25 and 37 °C). Then, the expressed protein was analyzed by Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and the Western blot methods.

Results: The best conditions for protein expression were obtained in the Super Optimal Broth (SOB) medium at 37 °C after the induction of expression by 1 mM IPTG for six hour.

Conclusion: The recombinant HCC vaccine was produced with a proper concentration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652490PMC
http://dx.doi.org/10.30476/IJMS.2021.90916.2199DOI Listing

Publication Analysis

Top Keywords

multi-epitope peptide
12
peptide vaccine
8
hepatocellular carcinoma
8
designed vaccine
8
vaccine construct
8
cell lymphocytes
8
vaccine
5
hcc
5
production novel
4
novel multi-epitope
4

Similar Publications

Hepatitis C Virus (HCV) is a blood borne pathogen that affects around 200 million individuals worldwide. Immunizations against the Hepatitis C Virus are intended to enhance T-cell responses and have been identified as a crucial component of successful antiviral therapy. Nevertheless, attempts to mediate clinically relevant anti-HCV activity in people have mainly failed, despite the vaccines present satisfactory progress.

View Article and Find Full Text PDF

The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.

View Article and Find Full Text PDF

Addressing the frequent emergence of SARS-CoV-2 mutant strains requires therapeutic approaches with innovative neutralization mechanisms. The targeting of multivalent nanobodies can enhance potency and reduce the risk of viral escape, positioning them as promising drug candidates. Here, the synergistic mechanisms of the two types of nanobodies are investigated deeply.

View Article and Find Full Text PDF

An Evaluation of the Cellular and Humoral Response of a Multi-Epitope Vaccine Candidate Against COVID-19 with Different Alum Adjuvants.

Pathogens

December 2024

Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Campus Aeropuerto, Carretera a Chichimequillas, Ejido Bolaños, Querétaro 76140, Mexico.

SARS-CoV-2 () is responsible for the disease identified by the World Health Organization (WHO) as COVID-19. We designed "CHIVAX 2.1", a multi-epitope vaccine, containing ten immunogenic peptides with conserved B-cell and T-cell epitopes in the receceptor binding domain (RBD) sequences of different SARS-CoV-2 variants of concern (VoCs).

View Article and Find Full Text PDF

CD204 is a distinct indicator for tumor-associated macrophages (TAMs) in glioma. Evidence indicates that CD204-positive TAMs are involved in the aggressive behavior of various types of cancers. This study was conducted to develop a new and effective peptide-based vaccine for GBM, specifically targeting CD204.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!