Background: Hepatocellular carcinoma (HCC) is one of the prevalent cancers in the world with a high recurrence rate. In recent years, different researches have focused on designing efficient multi-epitope peptide vaccines against HCC. In designing these vaccines, over-expressed antigens in HCC patients, such as α- fetoprotein (AFP) and glypican-3 (GPC-3), have been employed. In our previous study, a multi-epitope peptide vaccine for HCC was designed by methods. The designed vaccine construct included the AFP, GPC-3, and aspartyl-β-hydroxylase (ASPH) as CytoLoxic T cell Lymphocytes (CTL), one epitope from Tetanus Toxin Fragment C (TTFrC) as Helper T cell Lymphocytes (HTL), and a segment of microbial heat shock protein (HSP70) peptide as an adjuvant. All the mentioned parts were connected by appropriate linkers. The aim of this study is the production of the designed vaccine.
Methods: This research is experimental and was carried out in Fasa, Iran, in 2017. The designed vaccine construct gene was transformed to the BL21 (DE3) strain and expressed in different isopropyl β-D-1-thiogalactopyranoside (IPTG) concentrations (0.6 and 1 mM), times (4, 6, 8, 16 hours), and temperatures (25 and 37 °C). Then, the expressed protein was analyzed by Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and the Western blot methods.
Results: The best conditions for protein expression were obtained in the Super Optimal Broth (SOB) medium at 37 °C after the induction of expression by 1 mM IPTG for six hour.
Conclusion: The recombinant HCC vaccine was produced with a proper concentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652490 | PMC |
http://dx.doi.org/10.30476/IJMS.2021.90916.2199 | DOI Listing |
PLoS One
January 2025
Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia.
Hepatitis C Virus (HCV) is a blood borne pathogen that affects around 200 million individuals worldwide. Immunizations against the Hepatitis C Virus are intended to enhance T-cell responses and have been identified as a crucial component of successful antiviral therapy. Nevertheless, attempts to mediate clinically relevant anti-HCV activity in people have mainly failed, despite the vaccines present satisfactory progress.
View Article and Find Full Text PDFPLoS One
January 2025
Foot and Mouth Disease Department, National Veterinary Research Institute, Vom, Plateau State, Nigeria.
The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
Addressing the frequent emergence of SARS-CoV-2 mutant strains requires therapeutic approaches with innovative neutralization mechanisms. The targeting of multivalent nanobodies can enhance potency and reduce the risk of viral escape, positioning them as promising drug candidates. Here, the synergistic mechanisms of the two types of nanobodies are investigated deeply.
View Article and Find Full Text PDFPathogens
December 2024
Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Campus Aeropuerto, Carretera a Chichimequillas, Ejido Bolaños, Querétaro 76140, Mexico.
SARS-CoV-2 () is responsible for the disease identified by the World Health Organization (WHO) as COVID-19. We designed "CHIVAX 2.1", a multi-epitope vaccine, containing ten immunogenic peptides with conserved B-cell and T-cell epitopes in the receceptor binding domain (RBD) sequences of different SARS-CoV-2 variants of concern (VoCs).
View Article and Find Full Text PDFHeliyon
December 2024
Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
CD204 is a distinct indicator for tumor-associated macrophages (TAMs) in glioma. Evidence indicates that CD204-positive TAMs are involved in the aggressive behavior of various types of cancers. This study was conducted to develop a new and effective peptide-based vaccine for GBM, specifically targeting CD204.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!