Cardiac magnetic resonance (CMR) is a non-invasive imaging method that allows to characterize myocardial tissue. In particular, using the late gadolinium enhancement technique, it is possible to identify areas of focal fibrosis. Specific distribution patterns of this fibrosis allow us to distinguish ischaemic cardiomyopathy (iCMP) from non-ischaemic cardiomyopathy (nCMP) and sometimes to identify the aetiology of the latter. Diffuse fibrosis can also be identified using the parametric T1 mapping sequences. For this purpose, the native T1 of the tissue is measured before the administration of the contrast agent (c.a.) or the extracellular volume is calculated after c.a. Both focal and diffuse fibrosis evaluated with CMR appear to be strong prognostic predictors for the identification of threatening ventricular arrhythmias and sudden cardiac death. These evidence open the doors to a possible role of CMR in the selection of the patient to be sent to a defibrillator implant in primary prevention. In this review, we will briefly review the techniques used in CMR for the evaluation of fibrosis. We will then focus on the clinical role of myocardial tissue fibrosis detection in iCMP and nCMP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653130PMC
http://dx.doi.org/10.1093/eurheartjsupp/suac085DOI Listing

Publication Analysis

Top Keywords

cardiac magnetic
8
magnetic resonance
8
myocardial tissue
8
diffuse fibrosis
8
fibrosis
7
clinical implications
4
implications cardiac
4
resonance imaging
4
imaging fibrosis
4
fibrosis cardiac
4

Similar Publications

People living with HIV are at higher risk of heart failure and associated left atrial remodeling compared to people without HIV. Mechanisms are unclear but have been linked to inflammation and premature aging. Here we obtain plasma proteomics concurrently with cardiac magnetic resonance imaging in two independent study populations to identify parallels between HIV-related and aging-related immune dysfunction that could contribute to atrial remodeling and clinical heart failure.

View Article and Find Full Text PDF

Liver function and Alzheimer's brain pathologies: A longitudinal study: Liver and Alzheimer's pathologies.

J Prev Alzheimers Dis

January 2025

Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, 03080, Republic of Korea; Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, 08826, Republic of Korea. Electronic address:

Importance: The neuropathological links underlying the association between changes in liver function and AD have not yet been clearly elucidated.

Objective: We aimed to examine the relationship between liver function markers and longitudinal changes in Alzheimer's disease (AD) core pathologies.

Design: Data from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease, a longitudinal cohort study initiated in 2014, were utilized.

View Article and Find Full Text PDF

Background: The role of cyclic guanosine 3',5'-monophosphate (cGMP) after acute myocardial infarction (AMI) is not well understood despite its significance as a second messenger of natriuretic peptides (NPs) in cardiovascular disease. We investigated the association between the NP-cGMP cascade and left ventricular reverse remodelling (LVRR) in anterior AMI.

Methods: 67 patients with their first anterior AMI (median age, 64 years; male, 76%) underwent prospective evaluation of plasma concentrations of the molecular forms of A-type and B-type natriuretic peptide (BNP) and cGMP from immediately after primary percutaneous coronary intervention (PPCI) to 10 months post-AMI.

View Article and Find Full Text PDF
Article Synopsis
  • Left ventricular hypertrophy (LVH) is linked to serious cardiovascular issues, and identifying its cause is important for treatment; this systematic review explores how AI can help in diagnosing LVH and its causes from imaging data.
  • A thorough search was conducted utilizing multiple databases, leading to the inclusion of 30 studies which mainly focused on echocardiography and cardiac magnetic resonance imaging (CMR), with a smaller number on cardiac computed tomography (CT).
  • The review found that AI methods, especially deep learning and convolutional neural networks, showed good diagnostic performance, with the highest accuracy in identifying the causes of LVH rather than just detecting it; more real-life validation studies and cost-effectiveness assessments are recommended.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!