Methotrexate (MTX) is an antifolate drug used as a chemotherapeutic agent for acute lymphoblastic leukemia, where MTX improves patients' prognosis. Macrophage reprogramming is being increasingly assessed as an antitumor therapeutic strategy. However, and although MTX limits the pathogenic action of macrophages in chronic inflammatory diseases, its effects on tumor-promoting macrophages have not been previously explored. We now report that MTX shapes the transcriptional and functional profile of M-CSF-dependent human macrophages, whose transcriptome is highly enriched in the gene signature that defines pathogenic tumor-associated macrophages ("large TAM"). Specifically, MTX prompted the acquisition of the gene signature of antitumoral "small TAM" and skewed macrophages toward an IL-6high IFNβ1high IL-10low phenotype upon subsequent stimulation. Mechanistically, the MTX-induced macrophage reprogramming effect correlated with a reduction of the M-CSF receptor CSF1R expression and function, as well as a diminished expression of MAF and MAFB transcription factors, primary determinants of pro-tumoral macrophages whose transcriptional activity is dependent on GSK3β. Indeed, the ability of MTX to transcriptionally reprogram macrophages toward an antitumoral phenotype was abrogated by inhibition of GSK3β. Globally, our results establish MTX as a macrophage reprogramming drug and indicate that its ability to modulate macrophage polarization may also underlie its therapeutic benefits. Since GSK3β inhibition abrogates the reprogramming action of MTX, our results suggest that the GSK3β-MAFB/MAF axis constitutes a target for the macrophage-centered antitumor strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643894 | PMC |
http://dx.doi.org/10.1159/000526622 | DOI Listing |
Cell Rep
January 2025
Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China; State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, P.R. China. Electronic address:
Menin is a scaffold protein encoded by the Men1 gene, and it interacts with a variety of chromatin regulators to activate or repress cellular processes. The potential importance of menin in immune regulation remains unclear. Here, we report that myeloid deletion of Men1 results in the development of spontaneous pulmonary alveolar proteinosis (PAP).
View Article and Find Full Text PDFElife
January 2025
Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.
Estrogen significantly impacts women's health, and postmenopausal hypertension is a common issue characterized by blood pressure fluctuations. Current control strategies for this condition are limited in efficacy, necessitating further research into the underlying mechanisms. Although metabolomics has been applied to study various diseases, its use in understanding postmenopausal hypertension is scarce.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and one of the leading causes of cancer-related deaths worldwide due to limited treatment options. The tumor microenvironment (TME), which is usually immunosuppressive in HCC, appears to be a decisive factor for response to immunotherapy and strategies aimed at inducing a more inflamed TME hold promise to overcome resistance to immunotherapy. Within the TME, the interplay of various cell types determines whether immunotherapy is successful.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Emergency Medicine, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China.
Our study aims to investigate the role of pyrimidine metabolism in prostate cancer and its associations with the immune microenvironment, drug sensitivity, and tumor mutation burden. Through transcriptomic and single-cell RNA sequencing analyses, we explored metabolic pathway enrichment, immune infiltration patterns, and differential gene expression in prostate cancer samples. The results showed that pyrimidine metabolism-related genes were significantly upregulated in the P2 subgroup compared to the P1 subgroup, with enhanced metabolic activity observed in basal and luminal epithelial cells.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Macau, Institute of Chinese Medical Sciences, Avenida da Universidade, N22, Taipa, CHINA.
Engineered immune cell therapy has proven to be a transformative cancer treatment despite the challenges of its prohibitive costs and manufacturing complexity. In this study, we propose a concise "lipid droplet fusion" strategy for engineering macrophages. Because of the integration of hydrophobic alkyl chains and π-conjugated structures, the mildly synthesized sp2C-conjugated covalent organic framework (COF) UM-101 induced lipid droplet fusion and metabolic reprogramming of macrophages, thus promoting their antitumor classical activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!