The structure of a back propagation neural network was optimized by a particle swarm optimization (PSO) algorithm, and a back propagation neural network model based on a PSO algorithm was constructed. By comparison with a general back propagation neural network and logistic regression, the fitting performance and prediction performance of the PSO algorithm is discussed. Furthermore, based on the back propagation neural network optimized by the PSO algorithm, the risk factors related to hypertension were further explored through the mean influence value algorithm to construct a risk prediction model. In the evaluation of the fitting effect, the root mean square error and coefficient of determination of the back propagation neural network based on the PSO algorithm were 0.09 and 0.29, respectively. In the comparison of prediction performance, the accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve of the back propagation neural network based on PSO algorithm were 85.38%, 43.90%, 96.66%, and 0.86, respectively. The results showed that the backpropagation neural network optimized by PSO had the best fitting effect and prediction performance. Meanwhile, the mean impact value algorithm could screen out the risk factors related to hypertension and build a disease prediction model, which can provide clues for exploring the pathogenesis of hypertension and preventing hypertension.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731601 | PMC |
http://dx.doi.org/10.1111/jch.14597 | DOI Listing |
Knee Surg Relat Res
January 2025
Bioengineering Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
Background: Unplanned readmission, a measure of surgical quality, occurs after 4.8% of primary total knee arthroplasties (TKA). Although the prediction of individualized readmission risk may inform appropriate preoperative interventions, current predictive models, such as the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) surgical risk calculator (SRC), have limited utility.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China.
Background: Spinal cord injury (SCI) triggers a complex inflammatory response that impedes neural repair and functional recovery. The modulation of macrophage phenotypes is thus considered a promising therapeutic strategy to mitigate inflammation and promote regeneration.
Methods: We employed microarray and single-cell RNA sequencing (scRNA-seq) to investigate gene expression changes and immune cell dynamics in mice following crush injury at 3 and 7 days post-injury (dpi).
BMC Med Genomics
January 2025
School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China.
Background: Drug and protein targets affect the physiological functions and metabolic effects of the body through bonding reactions, and accurate prediction of drug-protein target interactions is crucial for drug development. In order to shorten the drug development cycle and reduce costs, machine learning methods are gradually playing an important role in the field of drug-target interactions.
Results: Compared with other methods, regression-based drug target affinity is more representative of the binding ability.
BMC Bioinformatics
January 2025
Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital of Capital Medical University, Beijing, 101100, China.
Background: MicroRNAs (miRNAs) are pivotal in the initiation and progression of complex human diseases and have been identified as targets for small molecule (SM) drugs. However, the expensive and time-intensive characteristics of conventional experimental techniques for identifying SM-miRNA associations highlight the necessity for efficient computational methodologies in this field.
Results: In this study, we proposed a deep learning method called Multi-source Data Fusion and Graph Neural Networks for Small Molecule-MiRNA Association (MDFGNN-SMMA) to predict potential SM-miRNA associations.
Sci Rep
January 2025
School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, P.O. Box: 16765-163, Tehran, Iran.
In this study, Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) were developed to estimate the equilibrium solubility and partial pressure of CO in blended aqueous solutions of diisopropanolamine (DIPA) and 2-amino-2-methylpropanol (AMP). In this study, several key parameters were analyzed to understand the behavior of the aqueous DIPA/AMP system for CO capture. Including DIPA (9-21 wt%), AMP (9-21 wt%), temperature (323.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!