Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neuromusculoskeletal models can be used to evaluate aberrant muscle function in cerebral palsy (CP), for example by estimating muscle and joint contact forces during gait. However, to be accurate, models should include representative musculotendon parameters. We aimed to estimate personalised parameters that capture the mechanical behaviour of the plantarflexors in children with CP and typically developing (TD) children. Ankle angle (using motion capture), torque (using a load-cell), and medial gastrocnemius fascicle lengths (using ultrasound) were measured during slow passive ankle dorsiflexion rotation for thirteen children with spastic CP and thirteen TD children. Per subject, the measured rotation was input to a scaled OpenSim model to simulate the torque and fascicle length output. Musculotendon model parameters were personalised by the best match between simulated and experimental torque-angle and fascicle length-angle curves according to a least-squares fit. Personalised tendon slack lengths were significantly longer and optimal fibre lengths significantly shorter in CP than model defaults and than in TD. Personalised tendon compliance was substantially higher in both groups compared to the model default. The presented method to personalise musculotendon parameters will likely yield more accurate simulations of subject-specific muscle mechanics, to help us understand the effects of altered musculotendon properties in CP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122634 | PMC |
http://dx.doi.org/10.1007/s10439-022-03107-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!