High Efficiency of Na- and Ca-Exchanged Chabazites in D/H Separation by Quantum Sieving.

ACS Appl Mater Interfaces

Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, BP 47870, Dijon 21078 Cedex, France.

Published: November 2022

Quantum sieving is a promising approach for separation of hydrogen isotopes using porous solids as sorbents at cryogenic temperatures (<77 K). In the present work, we characterized the properties of two aluminum-rich chabazites: Na-CHA and Ca-CHA (Si/Al = 2.1). The single-gas D and H adsorption isotherms were measured, and the thermodynamic selectivities were determined through coadsorption experiments in the temperature range 38-77 K. We found that at 38 K, Na-CHA shows a selectivity of 25.8 at a loading of 10.6 mmol·g. At the same temperature, Ca-CHA has slightly lower selectivity (18.3), but its uptake (12.9 mmol·g) is higher than that for Na-CHA. Comparison with the literature shows that the obtained values of selectivity are among the highest reported so far. This property combined with robustness and availability on the industrial scale of Al-rich chabazites makes them very promising materials for separation of hydrogen isotopes by quantum sieving.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c12927DOI Listing

Publication Analysis

Top Keywords

quantum sieving
8
high efficiency
4
efficiency na-
4
na- ca-exchanged
4
ca-exchanged chabazites
4
chabazites d/h
4
d/h separation
4
separation quantum
4
sieving quantum
4
sieving promising
4

Similar Publications

The development of straightforward synthetic methods for photoactive polycyclic aromatic hydrocarbons (PAHs) that avoid Pd-catalyzed or radical-based processes remains a challenge. Such methods are essential to reducing the cost and environmental impact of organic photodevices. In this work, we present a one-pot synthetic approach for creating novel bipolar PAHs with extended π-conjugation, which are not accessible via conventional Pd-catalyzed routes.

View Article and Find Full Text PDF

The properties and device applications of 2D semiconductors are highly sensitive to intrinsic structural defects due to their ultrathin nature. CuInSe (CIS) materials own excellent optoelectronic properties and ordered copper vacancies, making them widely applicable in photovoltaic and photodetection fields. However, the synthesis of 2D CIS nanoflakes remains challenging due to the nonlayered structure, multielement composition, and the competitive growth of various by-products, which further hinders the exploration of vacancy-related optoelectronic devices.

View Article and Find Full Text PDF

Metal-Organic Framework with Open Metal Sites for D/H Separation.

Inorg Chem

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

The separation of hydrogen isotopes remains a significant challenge due to their nearly identical physicochemical properties. Recently, metal-organic frameworks employing the chemical affinity quantum sieving effect have garnered increasing attention for hydrogen isotope separation. In this study, with open metal sites was synthesized and demonstrated high hydrogen isotope adsorption capacities of 266 cm/g for H and 288 cm/g for D.

View Article and Find Full Text PDF

The separation of mixtures of hydrogen isotopes is one of the greatest challenges of modern separation technology. A newly proposed separation mechanism, the quantum sieving (QS) effect, is expected to achieve high separation factors, the main desired properties for hydrogen isotope separation (HIS). Metal-organic frameworks (MOFs) and zeolites are excellent candidates to study these quantum effects because of their well-defined and tunable pore structure and the potential to introduce strong adsorption sites directly into the framework structure.

View Article and Find Full Text PDF

Structured beams carrying orbital angular momentum (OAM) provide powerful capabilities for applications in optical tweezers, super-resolution imaging, quantum optics, and ad-vanced microparticle manipulation. However, it is challenging for generate and control the OAM beams at the extreme ultraviolet (EUV) region due to the lack of suitable wave front shaping optics arise from being limited to the strong absorption of most materials. Here, we use a modified Fermat-spiral photon-sieve splitter to simultaneously generate two focused doughnut beams with opposite helical phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!