Treatment with opioids not only inhibits nociceptive transmission but also elicits a rebound and persistent increase in primary afferent input to the spinal cord. Opioid-elicited long-term potentiation (LTP) from TRPV1-expressing primary afferents plays a major role in opioid-induced hyperalgesia and analgesic tolerance. Here, we determined whether opioid-elicited LTP involves vesicular glutamate transporter-2 (VGluT2) or vesicular GABA transporter (VGAT) neurons in the spinal dorsal horn of male and female mice and identified underlying signaling mechanisms. Spinal cord slice recordings revealed that µ-opioid receptor (MOR) stimulation with DAMGO initially inhibited dorsal root-evoked EPSCs in 87% VGluT2 neurons and subsequently induced LTP in 49% of these neurons. Repeated morphine treatment increased the prevalence of VGluT2 neurons displaying LTP with a short onset latency. In contrast, DAMGO inhibited EPSCs in 46% VGAT neurons but did not elicit LTP in any VGAT neurons even in morphine-treated mice. Spinal superficial laminae were densely innervated by MOR-containing nerve terminals and were occupied by mostly VGluT2 neurons and few VGAT neurons. Furthermore, conditional knockout in dorsal root ganglion neurons diminished DAMGO-elicited LTP in lamina II neurons and attenuated hyperalgesia and analgesic tolerance induced by repeated treatment with morphine. In addition, DAMGO-elicited LTP in VGluT2 neurons was abolished by protein kinase C inhibition, gabapentin, knockout, or disrupting the α2δ-1-NMDA receptor interaction with an α2δ-1 C terminus peptide. Thus, brief MOR stimulation distinctively potentiates nociceptive primary afferent input to excitatory dorsal horn neurons via α2δ-1-coupled presynaptic NMDA receptors, thereby causing hyperalgesia and reducing analgesic actions of opioids. Opioid drugs are potent analgesics for treating severe pain and are commonly used during general anesthesia. However, opioid use often induces pain hypersensitivity, rapid loss of analgesic efficacy, and dose escalation, which can cause dependence, addiction, and even overdose fatality. This study demonstrates for the first time that brief opioid exposure preferentially augments primary sensory input to genetically identified glutamatergic excitatory, but not GABAergic/glycinergic inhibitory, neurons in nociceptive dorsal horn circuits. This opioid-elicited synaptic plasticity is cell type specific and mediated by protein kinase C-dependent and α2δ-1-dependent activation of NMDA receptors at primary sensory nerve terminals. These findings elucidate how intraoperative use of opioids for preemptive analgesia paradoxically aggravates postoperative pain and increases opioid consumption and suggest new strategies to improve opioid analgesic efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9794381 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1704-22.2022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!