Epidemiological studies have linked herbicides and Parkinson's disease (PD), with the strongest associations resulting from long exposure durations. Paraquat (PQ), an herbicide, induces PD-like syndromes and has widely been accepted as a PD mimetic. Currently, there is still no cure to prevent the progression of PD, and the search for effective therapeutic ways is urgent. Recently, the impairing activity of sirtuins (SIRTs), such as SIRT1, may correlate with PD etiology. However, the nonspecificity of SIRT1 agonists has made the protective mechanisms against PD unclear and hampered the therapeutic application of SIRT1. Thus, this study investigated the protective mechanism and therapeutic potential of SRT1720, a more specific agonist for SIRT1 synthesized by Sirtris, in alleviating the toxicity of PQ-induced cellular and animal models of PD. Here we show that SRT1720 alleviates PQ-induced toxicity in cell and animal models. Genetic silencing and pharmacological inhibition of SIRT1 attenuated SRT1720's protection against PQ-induced toxicity. Moreover, SRT1720 not only attenuated PQ-induced increased oxidative stress and mitochondrial free radical formations but also decreased mitochondrial membrane potential. Furthermore, SRT1720 reversed PQ-induced decreased PGC-1α levels and mitochondrial biogenesis. Although PQ and SRT1720 elevated NRF2 and antioxidative enzyme levels, only PQ decreased antioxidative enzyme activity but not SRT1720. NRF2 and PGC-1α silencing attenuated SRT1720 protection against PQ-induced toxicity. SRT1720 targeted SIRT1 and activated downstream PGC-1α and NRF2 signalings to prevent PQ-induced toxicity involving oxidative stress and mitochondrial dysfunction. Thus, SRT1720 might have therapeutic potential in preventing PD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663539 | PMC |
http://dx.doi.org/10.1016/j.redox.2022.102534 | DOI Listing |
Respir Res
January 2025
Emergency Department, The First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China.
Background: We sought to explore the molecular mechanisms underpinning acute lung injury (ALI) caused by poisoning with paraquat (PQ).
Methods: Selection mice were intraperitoneally injected with PQ at 40 mg/kg, whereas controls were injected with sterile saline. On days 2, 7, and 14 after administration, mice were anesthetized and sacrificed, and lung tissue was removed.
Crit Rev Anal Chem
November 2024
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.
Paraquat (PQ) is a potent and widely utilized herbicide known for its effectiveness in controlling a broad spectrum of weeds. Its chemical properties make it an invaluable tool in agriculture, where it helps maintain crop yields and manage invasive plant species. However, despite its benefits in weed management, PQ poses significant risks due to its severe toxicity, which affects multiple organ systems in both humans and animals.
View Article and Find Full Text PDFToxicol Res (Camb)
December 2024
Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Faculty of Pharmacy, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran.
Objective: Paraquat (PQ), a widely used non-selective herbicide, induces severe lung toxicity by promoting cell death and tissue necrosis through the generation of reactive oxygen species (ROS) and free radicals. This study aimed to develop and evaluate novel niosomal nanoparticles (NPs) encapsulating curcumin and piperine to mitigate PQ-induced acute pulmonary toxicity in Balb/c mice.
Methods: The NPs were prepared using non-ionic surfactants and cholesterol via the thin film hydration method.
Naunyn Schmiedebergs Arch Pharmacol
October 2024
Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
Levels of reactive oxygen species (ROS) are the primary determinants of pulmonary fibrosis. It was discovered that antioxidants can ameliorate pulmonary fibrosis caused by prolonged paraquat (PQ) exposure. However, research on the precise mechanisms by which antioxidants influence the signaling pathways implicated in pulmonary fibrosis induced by paraquat is still insufficient.
View Article and Find Full Text PDFEcotoxicol Environ Saf
November 2024
Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China. Electronic address:
Paraquat (PQ), a commonly used herbicide, is a potent environmental neurotoxin associated with Parkinson's disease (PD) and major depressive disorder (MDD). While the involvement of various brain cell types in the etiology of each disorder is well recognized, the specific cell subtypes implicated in the comorbidity of PD and MDD, especially under PQ neurotoxicity, remain poorly understood. In this study, we used single-cell RNA sequencing (scRNA-seq) to analyze brain tissues from mice with PQ-induced PD with MDD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!