Design and synthesis of hederagenin derivatives modulating STING/NF-κB signaling for the relief of acute liver injury in septic mice.

Eur J Med Chem

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China. Electronic address:

Published: January 2023

Systemic inflammatory responses often result in sepsis and inhibition of inflammation is one strategy for sepsis treatment. In this study, we designed and synthesized 32 novel hederagenin (HD) derivatives with modifications at the A-ring, C-28, and C-23 positions and screened their anti-inflammatory activities in vitro, finding multiple compounds with potential anti-inflammatory activity. Of these, compound 1 was the most effective and was used for subsequent investigations into its mechanism of action and in vivo activity. In vivo assessments of anti-inflammatory activity showed that compound 1 reduced inflammation in a mouse model of sepsis with acute liver injury caused by lipopolysaccharide (LPS). Compound 1 also inhibited STING, p-IRF3, p-TBK1, p-p65, and p-IκB proteins in cGAS-STING-associated signaling. These findings indicated that compound 1 reduced inflammation through inhibition of STING expression and hence reducing activation of STING and nuclear factor-κB (NF-κB) signaling. Our work demonstrated that compound 1 is a promising lead compound for designing and developing anti-sepsis drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2022.114911DOI Listing

Publication Analysis

Top Keywords

hederagenin derivatives
8
acute liver
8
liver injury
8
anti-inflammatory activity
8
activity compound
8
compound reduced
8
reduced inflammation
8
compound
6
design synthesis
4
synthesis hederagenin
4

Similar Publications

Hederagenin ameliorates ferroptosis-induced damage by regulating PPARα/Nrf2/GPX4 signaling pathway in HT22 cells: An in vitro and in silico study.

Bioorg Chem

December 2024

Institute of Geriatrics, The 2nd Medical Center, China National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China. Electronic address:

Background: Hederagenin (HG), derived from ivy seeds, is known to offer protection against Alzheimer's disease (AD). However, the specific molecular pathways through which it counters ferroptosis-induced neurotoxicity are not fully elucidated. This investigation seeks to delineate the processes by which HG mitigates neurotoxic effects in HT22 cells subjected to glutamate (Glu)-induced ferroptosis.

View Article and Find Full Text PDF

Background/aim: Hederagenin (3β,4α-3,23-dihydroxyolean-12-en-28-oic acid) is a natural pentacyclic triterpene that is present in various medicinal plants and exhibits pharmacological activities against various diseases, including cancer. The aim of the study was to investigate the effect of Aq3639 (3β-[(O-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl)oxy]olean-12-en-28-oic acid), a hederagenin glycoside comprising hederagenin and a disaccharide of L-rhamnose and L-arabinose, on breast cancer cells.

Materials And Methods: Aq3639 was isolated from the pericarps of Akebia quinata fruits, and its effects on cells from the human breast cell line MCF-7 were examined.

View Article and Find Full Text PDF

Obesity, characterized by abnormal or excessive fat accumulation, has become a chronic degenerative health condition that poses significant threats to overall well-being. Pharmacological intervention stands at the forefront of strategies to combat this issue. Recent studies, notably by Umut Ozcan's team, have uncovered the remarkable potential of Celastrol, a small-molecule compound derived from the traditional Chinese herb thunder god vine (Tripterygium wilfordii) as an anti-obesity agent.

View Article and Find Full Text PDF

Discovery and functional characterization of two novel glycosyltransferases associated with the biosynthesis of α-hederin in Dipsacus asperoides.

Plant Physiol Biochem

December 2024

Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China. Electronic address:

Triterpenoid saponins are crucial natural products widely distributed in various medicinal plants, with Dipsacus asperoides being particularly rich in these compounds. However, the glycosyltransferases responsible for the biosynthesis of α-hederin, one of the primary bioactive secondary metabolites in D. asperoides, have not been elucidated.

View Article and Find Full Text PDF

Background: Biejiaruangan capsule (BJRGC) is a commonly used traditional Chinese medicine preparation for treating oftreating liver fibrosis (LF), but its specific molecular mechanism is unclear. This study used mass spectrometry, network pharmacology and experimental verification to explore the mechanism of BJRGC against LF.

Methods: Ultrahigh-performance liquid chromatography-quadrupole-exactive-orbitrap-mass spectrometry (UHPLC-Q-Exactive-Orbitrap-MS) and network pharmacology were employed to identify and screen the potential components, targets, and signaling pathways of BJRGC against LF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!