Elucidating the phase transitions of decanoic-acid crystal by XRD, Raman, group theory and Gibbs energy analyses combined with DFT calculations.

Spectrochim Acta A Mol Biomol Spectrosc

Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, Pará, Brazil. Electronic address:

Published: February 2023

This research reports a series of phase transitions in the decanoic-acid (DA) crystal under low-temperature conditions, which were elucidated by XRD, Raman scattering and DFT calculations in a dimer of DA in the C form (monoclinic structure). The first phase change was noticed within the 210-190 K interval duly characterized as a transition of second-order type, as indicated by Gibbs energy behavior, suggesting that the monoclinic structure (P2/c) of the crystal is not changed. The second change was observed nearly 110-90 K, whose transition is first-order type occurring from the C form to an A form (triclinic), possibly belonging to the P1 space group. This new polymorphic phase was duly predicted through DFT calculations. According to Gibbs energy behavior, the third phase change (∼30-10 K) is proposed to be a transition from the A form to a new polymorphic phase that probably is a first-order transition, likely associated with a change from the P1 space group to P-1. Furthermore, group theory and wavenumber vs temperature plots' analyses corroborated the phase transitions undergone by DA crystal. In addition, anharmonicity effects in several Raman bands' behavior were noticed during the cooling. A correct assignment for the Raman and IR modes via DFT calculations at room-temperature conditions is also provided herein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2022.122068DOI Listing

Publication Analysis

Top Keywords

dft calculations
16
phase transitions
12
gibbs energy
12
transitions decanoic-acid
8
decanoic-acid crystal
8
xrd raman
8
group theory
8
monoclinic structure
8
phase change
8
energy behavior
8

Similar Publications

Density Functional Theory Insight in Photocatalytic Degradation of Dichlorvos Using Covalent Triazine Frameworks Modified by Various Oxygen-Containing Acid Groups.

Toxics

December 2024

Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China.

Dichlorvos (2,2-dichlorovinyl dimethyl phosphate, DDVP) is a highly toxic organophosphorus insecticide, and its persistence in air, water, and soil poses potential threats to human health and ecosystems. Covalent triazine frameworks (CTFs), with their sufficient visible-light harvesting capacity, ameliorated charge separation, and exceptional redox ability, have emerged as promising candidates for the photocatalytic degradation of DDVP. Nevertheless, pure CTFs lack effective oxidative active sites, resulting in elevated reaction energy barriers during the photodegradation of DDVP.

View Article and Find Full Text PDF

The coexistence of microplastics and benzo[a]pyrene (BaP) in the environment, and their interactions within agricultural soils in particular, have garnered widespread attention. This study focused on the early-stage interactions between microplastics and BaP, aiming to uncover their initial adsorption mechanisms. Despite the significant environmental toxicity of both pollutants, research on their mutual interactions in soil is still limited.

View Article and Find Full Text PDF

Carotenoid Interactions with PCSK9: Exploring Novel Cholesterol-Lowering Strategies.

Pharmaceuticals (Basel)

November 2024

Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy.

: This study investigated the potential of green algae-derived carotenoids as natural inhibitors of the proprotein convertase subtilisin/kexin type 9 (PCSK9), a key regulator of cholesterol metabolism. PCSK9 promotes the degradation of low-density lipoprotein receptors (LDLR), thereby increasing blood cholesterol levels and elevating the risk of cardiovascular diseases. /: We screened the pharmacophore fit score of 27 carotenoids with PCSK9 and identified 14 that were analyzed for binding affinity and molecular interactions.

View Article and Find Full Text PDF

In this paper, the enhancement of thermochemical energy storage by alkali metal chloride salts-doped Ca-based sorbents is revealed by experiments and DFT calculations. The results indicate that NaCl and KCl doping increases the reaction rate and cycle stability. Compared to CaO, the conversion of NaCl-CaO and KCl-CaO after one cycle is increased by 59.

View Article and Find Full Text PDF

Density Functional Theory Insights into Conduction Mechanisms in Perovskite-Type RCoO Nanofibers for Future Resistive Random-Access Memory Applications.

Molecules

December 2024

Inner Mongolia Key Lab of Solid State Chemistry for Battery, Inner Mongolia Engineering Research Center of Lithium-Sulfur Battery Energy Storage, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.

In the era of artificial intelligence and Internet of Things, data storage has an important impact on the future development direction of data analysis. Resistive random-access memory (RRAM) devices are the research hotspot in the era of artificial intelligence and Internet of Things. Perovskite-type rare-earth metal oxides are common functional materials and considered promising candidates for RRAM devices because their interesting electronic properties depend on the interaction between oxygen ions, transition metals, and rare-earth metals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!