Yarn-based muscle actuators are highly desired for applications in soft robotics, flexible sensors, and other related applications due to their actuation properties. Although the tethering avoiding release of inserted twist, the complex preparation process and harsh experimental conditions make tether-free structures yarn actuator with reliable cycle recovery effectiveness is needed. Herein, a tether-free, multi-hierarchical hybrid construction of a moisture-sensitive responsive yarn-based actuator with the viscose/PET ratio (VPR) = 0.9 exhibited a contraction stroke of 83.15%, a work capacity of 52.98 J·kg, and an exerting force of 0.15 MPa. Additionally, the maximum cycle recovery rate of 99% is comparable to that of human skeletal muscles, confirming the advantages of a two-component hybrid structure. The underlying mechanism is discussed based on geometric characterization and energy conversion analysis between the actuation source and the spring frame. The mechanical manufacturing process makes it simple to expand the structurally stable yarn muscles into fabric muscles, opening up new opportunities to advance the usage of yarn-based actuators in smart textiles, medical materials, intelligent plants, and other versatile fields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c15619DOI Listing

Publication Analysis

Top Keywords

cycle recovery
12
recovery effectiveness
8
yarn-based actuators
8
tether-free multi-hierarchical
8
multi-hierarchical hybrid
8
hybrid construction
8
moisture-sensitive response
4
response high-reliable
4
high-reliable cycle
4
yarn-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!