Inflammatory cholestatic liver diseases, including Primary Sclerosing Cholangitis (PSC), are characterized by periportal inflammation with progression to cirrhosis. The objective of this study was to examine interactions between oxidative stress and autophagy in cholestasis. Using hepatic tissue from male acute cholestatic (bile duct ligated) as well as chronic cholestatic (Mdr2KO) mice, localization of oxidative stress, the antioxidant response and induction of autophagy were analyzed and compared to human PSC liver. Concurrently, the ability of reactive aldehydes to post-translationally modify the autophagosome marker p62 was assessed in PSC liver tissue and in cell culture. Expression of autophagy markers was upregulated in human and mouse cholestatic liver. Whereas mRNA expression of Atg12, Lamp1, Sqstm1 and Map1lc3 was increased in acute cholestasis in mice, it was either suppressed or not significantly changed in chronic cholestasis. In human and murine cholestasis, periportal hepatocytes showed increased IHC staining of ubiquitin, 4-HNE, p62, and selected antioxidant proteins. Increased p62 staining colocalized with accumulation of 4-HNE-modified proteins in periportal parenchymal cells as well as with periportal macrophages in both human and mouse liver. Mechanistically, p62 was identified as a direct target of lipid aldehyde adduction in PSC hepatic tissue and in vitro cell culture. In vitro LS-MS/MS analysis of 4-HNE treated recombinant p62 identified carbonylation of His123, Cys128, His174, His181, Lys238, Cys290, His340, Lys341 and His385. These data indicate that dysregulation of autophagy and oxidative stress/protein damage are present in the same periportal hepatocyte compartment of both human and murine cholestasis. Thus, our results suggest that both increased expression as well as ineffective autophagic degradation of oxidatively-modified proteins contributes to injury in periportal parenchymal cells and that direct modification of p62 by reactive aldehydes may contribute to autophagic dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9665405 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276879 | PLOS |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China.
High expression of drug efflux pump makes antibiotics ineffective against bacteria, leading to drug-resistant strains and even the emergence of "superbugs". Herein, we design and synthesize a dual functional o-nitrobenzene (NB)-modified conjugated oligo-polyfluorene vinylene (OPFV) photosensitizer, OPFV-NB, which can depress efflux pump activity and also possesses photodynamic therapy (PDT) for synergistically overcoming drug-resistant bacteria. Upon light irradiation, the OPFV-NB can produce aldehyde active groups to covalently bind outer membrane proteins, such as tolerant colicin (TolC), blocking drug efflux of bacteria.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Clinical Research Center, Department of Medical Research, Yangon, Myanmar.
Background: Diabetes mellitus increases the risk of cognitive decline and neuronal degeneration. In diabetes, persistently elevated blood sugar levels cause not only the generation of reactive oxygen species (ROS), but also systemic inflammation (1). This raises an intriguing question: do patients with controlled or uncontrolled diabetes exhibit similar levels of oxidative stress and systemic inflammation as reliable predictors of peripheral neuropathy and cognitive decline?
Method: In 2019, 150 participants with diabetes mellitus who had been diagnosed for more than 5 years were voluntarily enrolled.
Alzheimers Dement
December 2024
Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA.
Background: Oxidative stress has been implicated in the pathogenesis of Alzheimer's disease (AD). Nevertheless, whether redox perturbations are associated with cognition and AD pathology in the preclinical AD stages, remains unclear. We examined associations of blood redox markers with AD biomarkers and cognitive performance in older adults without clinical dementia.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.
Background: Numerous studies have highlighted the role of oxidative stress in Alzheimer's disease (AD) development. Yet, the alignment of systemic and central oxidative stress biomarkers is unclear across diverse populations in the AD continuum. This study aims to assess protein damage levels in plasma and cerebrospinal fluid (CSF) within the AD continuum.
View Article and Find Full Text PDFInorg Chem
January 2025
Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024, China.
The bipyridyl tantalum complex (2,6-PrCHO)Ta(bipy) () is synthesized by the reaction of (2,6-PrCHO)TaCl () and 2,2'-bipyridine in the presence of excess potassium graphite (KC). Complex coordinates readily with pyridine and 4-(dimethylamino)pyridine (dmap) to form Lewis base adducts (2,6-PrCHO)Ta(bipy)(L) (L = py (), dmap ()), and it exhibits rich redox reactivity toward small molecules: (a) single electron transfer (SET) occurs upon exposure of to phenyl sulfide or selenide dimer, giving the open-shell, bipy-centered radical complexes (2,6-PrCHO)Ta(bipy)(PhE) (E = S (), Se ()). (b) Regioselective C-C σ-bond formation via radical coupling is observed in the SET reaction of and aldehydes, ketones, or imines to furnish insertion products -, namely, sterically more crowded benzophenone, acetophenone, 2,6-dichlorobenzaldehyde, and benzophenone imine couple with C6 or C6' of bipy in , respectively, whereas sterically less hindered benzaldehyde, cyclohexanone, and benzylideneaniline couple with C2 or C2' of bipy, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!