Despite the widespread use of SARS-CoV-2-specific monoclonal antibody (mAb) therapy for the treatment of acute COVID-19, the impact of this therapy on the development of SARS-CoV-2-specific T cell responses has been unknown, resulting in uncertainty as to whether anti-SARS-CoV-2 mAb administration may result in failure to generate immune memory. Alternatively, it has been suggested that SARS-CoV-2-specific mAb may enhance adaptive immunity to SARS-CoV-2 via a "vaccinal effect." Bamlanivimab (Eli Lilly and Company) is a recombinant human IgG1 that was granted FDA emergency use authorization for the treatment of mild to moderate COVID-19 in those at high risk for progression to severe disease. Here, we compared SARS-CoV-2-specific CD4+ and CD8+ T cell responses of 95 individuals from the ACTIV-2/A5401 clinical trial 28 days after treatment with bamlanivimab versus placebo. SARS-CoV-2-specific T cell responses were evaluated using activation-induced marker assays in conjunction with intracellular cytokine staining. We demonstrate that most individuals with acute COVID-19 developed SARS-CoV-2-specific T cell responses. Overall, our findings suggest that the quantity and quality of SARS-CoV-2-specific T cell memory were not diminished in individuals who received bamlanivimab for acute COVID-19. Receipt of bamlanivimab during acute COVID-19 neither diminished nor enhanced SARS-CoV-2-specific cellular immunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869965PMC
http://dx.doi.org/10.1172/jci.insight.163471DOI Listing

Publication Analysis

Top Keywords

acute covid-19
20
cell responses
20
sars-cov-2-specific cell
16
sars-cov-2-specific
9
bamlanivimab acute
8
covid-19
6
cell
6
bamlanivimab
5
acute
5
responses
5

Similar Publications

High flow nasal cannula (HFNC) can reduce the need for intubation in patients with coronavirus disease-19 (COVID-19) pneumonia induced acute hypoxemic respiratory failure (AHRF), but predictors of HFNC success could be characterized better. C-reactive protein (CRP) and D-dimer are associated with COVID-19 severity and progression. However, no one has evaluated the use of serial CRP and D-dimer ratios to predict HFNC success.

View Article and Find Full Text PDF

Qingwen Zhike prescription (QWZK), a traditional Chinese medicine (TCM) hospital prescription developed in response to the corona virus disease 2019 (COVID-19) pandemic, has demonstrated efficacy in clinical practice. Nevertheless, its specific antiviral components and mechanisms of action remain unclear. This study screened the antiviral compounds against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from Qingwen Zhike prescription and explored the underlying mechanism through chemical composition analysis, serum and lung exposure profiles analysis, high-throughput screening, and transmission electron microscopy (TEM) observation.

View Article and Find Full Text PDF

Short-Time Preamplification-Assisted One-Pot CRISPR Nucleic Acid Detection Method with Portable Self-Heating Equipment for Point-of-Care Diagnosis.

Anal Chem

January 2025

State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an 710054, China.

Infectious diseases, especially respiratory infections, have been significant threats to human health. Therefore, it is essential to develop rapid, portable, and highly sensitive diagnostic methods for their control. Herein, a short-time preamplified, one-pot clustered regularly interspaced short palindromic repeats (CRISPR) nucleic acid detection method (SPOC) is developed by combining the rapid recombinase polymerase amplification (RPA) with CRISPR-Cas12a to reduce the mutual interference and achieve facile and rapid molecular diagnosis.

View Article and Find Full Text PDF

Senolytic treatment attenuates immune cell infiltration without improving IAV outcomes in aged mice.

Aging Cell

January 2025

Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.

Aging is a major risk factor for poor outcomes following respiratory infections. In animal models, the most severe outcomes of respiratory infections in older hosts have been associated with an increased burden of senescent cells that accumulate over time with age and create a hyperinflammatory response. Although studies using coronavirus animal models have demonstrated that removal of senescent cells with senolytics, a class of drugs that selectively kills senescent cells, resulted in reduced lung damage and increased survival, little is known about the role that senescent cells play in the outcome of influenza A viral (IAV) infections in aged mice.

View Article and Find Full Text PDF

Combating COVID-19 and its co-infection by Aspergillus tamarii SP73-EGY using in vitro and in silico Studies.

Sci Rep

January 2025

Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki-Giza, Egypt.

The COVID-19 pandemic has caused significant mortality and morbidity for millions of people. Severe Acute Respiratory Syndrome-2 (SARS-CoV-2) virus is capable of causing severe and fatal diseases. We evaluated the antiviral properties of Aspergillus tamarii SP73-EGY isolate extract against low pathogenic coronavirus (229E), Adeno-7- and Herpes-2 viruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!