A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Promotion of osteogenesis in BMSC under hypoxia by ATF4 via the PERK-eIF2α signaling pathway. | LitMetric

Mandibular distraction osteogenesis (MDO) is an endogenous tissue engineering technology in which bone marrow mesenchymal stem cells (BMSC) play a key role in MDO-related osteogenesis. Activating transcription factor 4 (ATF4) is involved in osteogenesis through activation of PERK (Protein kinase R-like endoplasmic reticulum kinase) in endoplasmic reticulum stress (ERS) condition under hypoxia. However, the specific role of ATF4 in MDO with BMSC remains unknown. The aim of this study was to explore the effects of ATF4 in MDO with BMSC under hypoxia. Briefly, canine BMSCs were cultured in a hypoxic chamber, and effects of hypoxia were evaluated using cell migration assay and Alizarin Red S staining. Expression levels of protein kinase R-like endoplasmic reticulum kinase, eukaryotic translation initiation factor 2α, ATF4, osteocalcin, and bone sialoprotein were evaluated using quantitative polymerase chain reaction and western blotting. BMSCs were transduced with the ATF4-small interfering RNA lentivirus. The effects were evaluated using all the aforementioned experiments. The results showed that hypoxia promoted migration, osteoblast differentiation, and ATF4 expression in BMSC. ATF4 knockdown in BMSC significantly inhibited migration and osteoblast differentiation abilities, while hypoxia reversed these effects to some extent. In addition, the molecular mechanism partly depended on the ERS signaling pathway, with ATF4 as the key factor. In summary, we presented a novel mechanism of ATF4-mediated regulation of BMSC under hypoxia.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11626-022-00732-4DOI Listing

Publication Analysis

Top Keywords

bmsc hypoxia
12
endoplasmic reticulum
12
atf4
8
signaling pathway
8
protein kinase
8
kinase r-like
8
r-like endoplasmic
8
reticulum kinase
8
atf4 mdo
8
mdo bmsc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!