Duck plague caused by duck plague virus (DPV) is one of the main diseases that seriously endangers the production of waterfowl. DPV possesses a large genome consisting of 78 open reading frames (ORFs), and understanding the function and mechanism of each encoded protein in viral replication and pathogenesis is the key to controlling duck plague outbreaks. US1 is one of the two genes located in the repeat regions of the DPV genome, but the function of its encoded protein in DPV replication and pathogenesis remains unclear. Previous studies found that the US1 gene or its homologs exist in almost all alphaherpesviruses, but the loci, functions, and pathogenesis of their encoded proteins vary among different viruses. Here, we aimed to define the roles of US1 genes in DPV infection and pathogenesis by generating a double US1 gene deletion mutant and its revertant without any mini-F cassette retention. and studies found that deletion of both copies of the US1 gene significantly impaired the replication, gene expression, and virulence of DPV, which could represent a potential candidate vaccine strain for the prevention of duck plague. Duck plague virus contains nearly 80 genes, but the functions and mechanisms of most of the genes have not yet been elucidated, including those of the newly identified immediate early gene US1. Here, we found that US1 deletion reduces viral gene expression, replication, and virus production both and . This insight defines a fundamental role of the US1 gene in DPV infection and indicates its involvement in DPV transcription. These results provide clues for the study of the pathogenesis of the US1 gene and the development of attenuated vaccines targeting this gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784771PMC
http://dx.doi.org/10.1128/spectrum.01140-22DOI Listing

Publication Analysis

Top Keywords

us1 gene
24
duck plague
24
plague virus
12
us1
10
gene
10
copies us1
8
dpv
8
encoded protein
8
replication pathogenesis
8
us1 genes
8

Similar Publications

Phytophthora infestans is a major oomycete plant pathogen, responsible for potato late blight, which led to the Irish Potato Famine from 1845-1852. Since then, potatoes resistant to this disease have been bred and deployed worldwide. Their resistance (R) genes recognize pathogen effectors responsible for virulence and then induce a plant response stopping disease progression.

View Article and Find Full Text PDF

Unlabelled: Proteins encoded by the ESX-1 genes of interest are essential for full virulence in all complex (Mtbc) lineages, the pathogens causing the highest mortality worldwide. Identifying critical regions in these ESX-1-related proteins could provide preventive or therapeutic targets for Mtb infection, the game changer needed for tuberculosis control. We analyzed a compendium of whole genome sequences of clinical Mtb isolates from all lineages from >32,000 patients and identified single nucleotide polymorphisms.

View Article and Find Full Text PDF

Although it is widely accepted that herpesviruses utilize host RNA polymerase II (RNAPII) to transcribe viral genes, the mechanism of utilization varies significantly among herpesviruses. With the exception of herpes simplex virus 1 (HSV-1) in alpha-herpesviruses, the mechanism by which RNAPII transcribes viral genes in the remaining alpha-herpesviruses has not been reported. In this study, we investigated the transcriptional mechanism of an avian alpha-herpesvirus, Anatid herpesvirus 1 (AnHV-1).

View Article and Find Full Text PDF
Article Synopsis
  • Biocontrol agents, including bacterial strains like Pseudomonas and Bacillus, were tested for their effectiveness against plant pathogens, particularly Fusarium solani and Pectobacterium spp. in potatoes.
  • * Pseudomonas chlororaphis VUPf5 and Bacillus velezensis strains Q12 and US1 showed significant growth inhibition of these pathogens in both laboratory and greenhouse settings.
  • * Genetic analysis revealed strain Q12 has a higher number of genes associated with stress response and antibacterial compounds than US1, suggesting it might be more effective in controlling bacterial pathogens.
View Article and Find Full Text PDF

Pseudorabies virus (PRV) variants have caused substantial economic losses in the swine industry in China since 2011. To surveil the genetic variation in PRV field strains, here, two novel variant strains of PRV were isolated from Shanxi Province in central China and were designated SX1910 and SX1911. To identify the genetic characteristics of the two isolates, their complete genomes were sequenced, and phylogenetic analysis and sequence alignment revealed that field PRV variants have undergone genetic variations; notably, the protein-coding sequences UL5, UL36, US1 and IE180 exhibited extensive variation and contained one or more hypervariable regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!