A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ste3 G-Protein Coupled Receptor: A Mediator of Hyphal Chemotropism and Pathogenesis. | LitMetric

Fungal hyphal chemotropism has been shown to be a major contributor to host-pathogen interactions. Previous studies on Fusarium species have highlighted the involvement of the Ste2 G-protein-coupled receptor (GPCR) in mediating polarized hyphal growth toward host-released peroxidase. Here, the role of the opposite mating type GPCR, Ste3, is characterized with respect to Fusarium graminearum chemotropism and pathogenicity. deletion strains were found to be compromised in the chemotropic response toward peroxidase, development of lesions on germinating wheat, and infection of Arabidopsis thaliana leaves. In the absence of Ste3 or Ste2, F. graminearum cells exposed to peroxidase showed no phosphorylation of the cell-wall integrity, mitogen-activated protein kinase pathway component Mgv1. In addition, transcriptomic gene expression profiling yielded a list of genes involved in cellular reorganization, cell wall remodeling, and infection-mediated responses that were differentially modulated by peroxidase when Ste3 was present. Deletion of Ste3 yielded the downregulation of genes associated with mycotoxin biosynthesis and appressorium development, compared to the wild-type strain, both in the presence of peroxidase. Together, these findings contribute to our understanding of the mechanism underlying fungal chemotropism and pathogenesis while raising the novel hypothesis that Ste2 and Ste3 are interdependent on each other for the mediation of the redirection of hyphal growth in response to host-derived peroxidase. Fusarium head blight of wheat, caused by the filamentous fungus Fusarium graminearum, leads to devastating global food shortages and economic losses. Fungal hyphal chemotropism has been shown to be a major contributor to host-pathogen interactions. Here, the role of the opposite mating type GPCR, Ste3, is characterized with respect to F. graminearum chemotropism and pathogenicity. These findings contribute to our understanding of the mechanisms underlying fungal chemotropism and pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769807PMC
http://dx.doi.org/10.1128/msphere.00456-22DOI Listing

Publication Analysis

Top Keywords

hyphal chemotropism
12
chemotropism pathogenesis
12
fungal hyphal
8
chemotropism major
8
major contributor
8
contributor host-pathogen
8
host-pathogen interactions
8
hyphal growth
8
role opposite
8
opposite mating
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!