It is of utmost importance that bleeding should be stopped and infection be prevented in people with trauma. In this study, an anisotropic Janus mesoporous silica nanosheet (MSNS) with different functional groups was designed and prepared. In order to endow both sides of the MSNS with independent fast hemostasis and effective antibacterial action, the MSNS was modified with cardanol (CA) and 2,3-epoxypropyltrimethylammonium (GTA). The addition of CA significantly improved the hemostatic property of the MSNS. In a SD rat femoral artery injury model, the hemostatic time of CA-MSNS-GTA was 47% shorter than that of the MSNS, attributed to the sealing of the hydrophobic alkyl side chain and the adhesion of phenolic hydroxyl groups in CA. CA-MSNS-GTA could form a three-dimensional network with fibrin to further accelerate the coagulation process. This Janus material exhibited excellent antibacterial effects (∼90%) against Gram-positive bacteria () and Gram-negative bacteria () due to the presence of GTA. The cytotoxicity test showed that CA-MNS-GTA exhibited biosafety, which provided safety guarantee for clinical applications in the future. This Janus dressing with different functions on two opposite sides provides synergetic multifunctional effects during wound healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2tb02082c | DOI Listing |
Pest Manag Sci
December 2024
School of Pharmacy, Lanzhou University, Lanzhou, China.
Background: Plant diseases caused by plant pathogens pose a great threat to biodiversity and food security, and the problem of drug resistance caused by traditional antibiotics and fungicides is becoming more and more serious. It is urgent to develop new antibacterial molecules with low toxicity and high efficiency. Marinoquinoline A is an alkaloid isolated from marine actinomycetes and has a variety of pharmacological activities.
View Article and Find Full Text PDFMol Pharm
December 2024
Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Gallium, a trace metal not found in its elemental form in nature, has garnered significant interest as a biocide, given its ability to interfere with iron metabolism in bacteria. Consequently, several gallium compounds have been developed and studied for their antimicrobial properties but face challenges of poor solubility and formulation for delivery. Organizing the metal into three-dimensional, hybrid scaffolds, termed metal-organic frameworks (MOFs), is an emerging platform with potential to address many of these limitations.
View Article and Find Full Text PDFMol Divers
December 2024
Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, 550005, People's Republic of China.
Natural compounds' derivatives as lead structures could effectively solve plant disease problems. In this article, amide compounds and amide ester compounds were synthetized through ferulic acid as the parent nucleus structure, and their biological activities in vitro and in vivo were evaluated. Compound 1q was screened out as the one with the best activity performance toward Xanthomonas axonopodis pv.
View Article and Find Full Text PDFInfect Dis Rep
December 2024
Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli 620024, India.
Indwelling intrauterine contraceptive devices (IUDs) have surfaces that facilitate the attachment of spp., creating a suitable environment for biofilm formation. Due to this, vulvovaginal candidiasis (VVC) is frequently linked to IUD usage, necessitating the prompt removal of these devices for effective treatment.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Diagnostics and Public Health, Microbiology Section, Verona University, 37134 Verona, Italy.
In recent years, novel antimicrobials have been developed to counter the emergence of antimicrobial resistance and provide effective therapeutic options against multidrug-resistant (MDR) Gram-negative bacilli (GNB). Cefiderocol, a siderophore cephalosporin, represents a novel valuable antimicrobial drug for the treatment of infections caused by MDR-GNB. The mechanism of cefiderocol to penetrate through the outer membrane of bacterial cells, termed "", makes this antimicrobial drug unique and immune to the various resistance strategies adopted by GNB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!