Infections caused by biofouling have become a serious concern in the health care sector. Multifunctional coatings with antifouling and antibacterial properties are widely used to combat these biofouling related infections. However, in practice macro or micro scratches or damages can happen to the coating, which can act as an active site for microbial deposition and destroy the antifouling or antibacterial functionality of the coating. Considering this fact, we have developed an excellent biocompatible and multifunctional coating with antifouling, antibacterial and self-healing properties. In this study, prebiotic chemistry inspired self-polymerization of aminomalononitrile (AMN) was used as a primary coating layer, which acted as a primer to graft vitamin B5 analogous methacrylamide polymer poly(B5AMA) and zwitterionic compound 2-methacryloyloxyethyl phosphorylcholine (MPC) containing polymer poly (MPC--B5AMA) by forming strong hydrogen bonds. B5AMA having multiple polar groups in the structure acted as an intrinsic self-healing material and showed an excellent antifouling property against protein and bacteria, maintaining a good hydration layer similar to the MPC containing polymer. To impart the antibacterial property to the coating, silver nanoparticles have also been incorporated, which showed more than 90% killing efficiency against both Gram-positive () and Gram-negative () bacteria with significant reduction of their adhesion on the surface. Incorporation of self-healing property into the fouling repelling and antibacterial coating can significantly extend the durability of the multifunctional coating, making it promising for biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2bm01055kDOI Listing

Publication Analysis

Top Keywords

antifouling antibacterial
16
coating
8
intrinsic self-healing
8
self-healing property
8
multifunctional coating
8
mpc polymer
8
antibacterial
6
bioinspired antifouling
4
polymer
4
antibacterial polymer
4

Similar Publications

Antifouling zwitterionic materials have extensive applications in the biomedical field. This study designed and successfully synthesized a novel poly(carboxybetaine) diacrylate (PCBDA) via cationic ring-opening polymerization of 2-methyl-2-oxazine, chain modification by the Michael reaction, and chain end transformation to acrylate. The cross-linker was obtained with a tunable molecular weight.

View Article and Find Full Text PDF

Stable Antifouling and Antibacterial Coating Based on Assembly of Copper-Phenolic Networks.

ACS Appl Bio Mater

January 2025

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.

Biofilm formation on medical devices has become a worldwide issue arising from its resistance to bactericidal agents and presenting challenges to eradicating biofouling adhesion, especially in biological fluids. Metal-phenolic networks have been demonstrated as a versatile and efficient strategy to prevent biofilm formation by endowing medical devices with prolonged antifouling and antibacterial activities in a one-step surface modification. In this study, we report a simple and environmentally friendly method using coordination chemistry between copper ions (Cu) and dopamine-containing copolymer to fabricate metal-phenolic network-based coatings.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology.

View Article and Find Full Text PDF

Ultrasound-Controllable Release of Carbon Monoxide in Multifunctional Polymer Coating for Synergetic Treatment of Catheter-Related Infections.

Adv Healthc Mater

January 2025

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.

Medical catheters are susceptible to biological contamination and pathogen invasion, leading to infection and inflammatory complications. The development of antimicrobial coatings for medical devices has emerged as a promising strategy. However, limited biological functionality and the incompatibility between bactericidal properties and biosafety remain great challenges.

View Article and Find Full Text PDF

Facile universal strategy of presenting multifunctional short peptides for customizing desired surfaces.

J Nanobiotechnology

January 2025

Department of Spinal Surgery, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, Zhejiang, 317500, China.

Article Synopsis
  • Interfacial properties of biomaterials influence critical functions like cell adhesion and tissue repair, making their manipulation essential for clinical applications.
  • The study develops a versatile layer-by-layer (LbL) strategy to effectively attach peptides to substrates using polyphenols, enhancing interfacial functionalities.
  • The resulting peptide-polyphenol coatings demonstrate broad applicability, stability, and the ability to incorporate various functional molecules for improved biomaterial performance.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!