The anti-hyperglycemic sodium glucose co-transporter 2 inhibitor Canagliflozin (CFZ) represents a recent antihyperglycemic modality, yet it suffers from low oral bioavailability. The current work aims to formulate CFZ-loaded transdermal nanostructured liquid crystal gel matrix (NLCG) to improve its therapeutic efficiency. Pre-formulation study included the construction of pseudoternary phase diagrams to explore the effect of two conventional amphiphiles against amphiphilic tri-block copolymer in the formulation of NLCG. The influence of different co-solvents was also investigated with the use of monooleine as the oil. Physical characterization, morphological examination and skin permeation were performed for the optimized formulations. The formula of choice was further investigated for skin irritation and chemical stability. Pharmacodynamic evaluation of the successful formula was conducted on hyperglycemic as well as normoglycemic mice. In addition, oral glucose tolerance test was conducted. Results revealed the supremacy of Poloxamer for stabilizing and maximizing liquid crystal gel (LCG) area percentage that reached up to 12.6%. CFZ-NLCG2 isotropic formula showed the highest permeation parameters; maximum flux value of 7460 μg/cm h and of 5327 μg/cm. Pharmacodynamic evaluation revealed the superiority of the antihyperglycemic activity of CFZ-NLCG2 in fasting mice and its equivalence in the oral glucose tolerance test (OGTT) compared to the oral one. The obtained results confirmed the success of CFZ-NLCG2 in the transdermal delivery of CFZ in therapeutically effective concentration compared to the oral route, bypassing first pass effect; in addition, eliminates the possible gastrointestinal side effects related to the inhibition of intestinal sodium glucose co-transporter (SGLT) and maximizes its selectivity to the desired inhibition of renal SGLT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9848419PMC
http://dx.doi.org/10.1080/10717544.2022.2144546DOI Listing

Publication Analysis

Top Keywords

nanostructured liquid
8
transdermal delivery
8
sodium glucose
8
glucose co-transporter
8
liquid crystal
8
crystal gel
8
pharmacodynamic evaluation
8
oral glucose
8
glucose tolerance
8
tolerance test
8

Similar Publications

Recreating Silk's Fibrillar Nanostructure by Spinning Solubilized, Undegummed Silk.

Adv Mater

January 2025

Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Pigdons Road, Geelong, VIC, 3216, Australia.

The remarkable toughness (>70 MJ m) of silkworm silk is largely attributed to its hierarchically arranged nanofibrillar nanostructure. Recreating such tough fibers through artificial spinning is often challenging, in part because degummed, dissolved silk is drastically different to the unspun native feedstock found in the spinning gland. The present work demonstrates a method to dissolve silk without degumming to produce a solution containing undegraded fibroin and sericin.

View Article and Find Full Text PDF

Precise patterning of sensing materials, particularly the long-range-ordered assembly of micro/nanostructures, is pivotal for improving sensor performance, facilitating miniaturization, and enabling seamless integration. This paper examines the importance of interfacial confined assembly in sensor patterning, including gas-liquid and liquid-liquid confined assembly, wettability-assisted or microstructure-assisted solid-liquid interfacial confined assembly, and tip-induced confined assembly. The application of capillary bridge confined assembly technology in chemical sensors, flexible electronics, and optoelectronics is highlighted.

View Article and Find Full Text PDF

Ice-Confined Synthesis of Stacked Polymer Nanospheres as Osmotic Power Generation Membranes.

Nano Lett

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

Osmotic power extracts electricity from salinity gradients and provides a viable route toward clean energy. To improve the energy conversion efficiency, common strategies rely on fabricating precisely controlled nanopores to meet the requirements of high ionic conductivity and selectivity. We report ion transport through the free-volume networks in stacked polymer nanospheres for osmotic power harvesting.

View Article and Find Full Text PDF

In this study, we present an intelligent electromagnetic-actuated microfluidic chip integrated with a G-quadruplex DNAzyme-based biocatalysis platform for rapid and sensitive tetracycline (TC) detection. In this sensing system, TC significantly quenches fluorescent magnetic carbon dots (M-CDs) via the internal filtration effect and dynamic quenching (the excitation and emission wavelength at 350 and 440 nm, respectively). Then, the G-quadruplex on the M-CDs-Aptamer is exposed and bound with hemin to form hemin-G-quadruplex DNAzyme, catalyzing the conversion of 3,3',5,5'-tetramethylbenzidine to produce blue color.

View Article and Find Full Text PDF

Liquid Active Surface Growth: Explaining the Symmetry Breaking in Liquid Nanoparticles.

ACS Nano

January 2025

Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China.

In our previous studies of metal nanoparticle growth, we have come to realize that the dynamic interplay between ligand passivation and metal deposition, as opposed to static facet control, is responsible for focused growth at a few active sites. In this work, we show that the same underlying principle could be applied to a very different system and explain the abnormal growth modes of liquid nanoparticles. In such a liquid active surface growth (LASG), the interplay between droplet expansion and simultaneous silica shell encapsulation gives rise to an active site of growth, which eventually becomes the long necks of nanobottles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!