Since its advent in December 2019, SARS-CoV-2 has diverged into multiple variants with differing levels of virulence owing to the accumulation of mutations in its genome. The structural changes induced by non-synonymous mutations in major drug targets of the virus are known to alter the binding of potential antagonistic inhibitors. Here, we analyzed the effects of non-synonymous mutations in major targets of SARS-CoV-2 in response to potential peptide inhibitors. We screened 12 peptides reported to have anti-viral properties against RBD and 5 peptides against M of SARS-CoV-2 variants using molecular docking and simulation approaches. The mutational landscape of RBD among SARS-CoV-2 variants had 21 non-synonymous mutations across 18 distinct sites. Among these, 14 mutations were present in the RBM region directly interacting with the hACE2 receptor. However, Only 3 non-synonymous mutations were observed in M. We found that LCB1 - a de novo-synthesized peptide has the highest binding affinity to RBD despite non-synonymous mutations in variants and engages key residues of RBD-hACE2 interaction such as K417, E484, N487, and N501. Similarly, an antimicrobial peptide; 2JOS, was identified against M with high binding affinity as it interacts with key residues in dimerization sites such as E166 and F140 crucial for viral replication. MD simulations affirm the stability of RBD-LCB1 and M-2JOS complexes with an average RMSD of 1.902 and 2.476 respectively. We ascertain that LCB1 and 2JOS peptides are promising inhibitors to combat emerging variants of SARS-CoV-2 and thus warrant further investigations using and analysis.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2022.2143426 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!