Objective: Angiogenesis has critical roles in several physiological processes. Restoring angiogenesis in some pathological conditions such as a few vascular diseases can be a therapeutic approach to controlling this issue. Mesenchymal stem cells (MSCs) secrete specific intracellular products known as extracellular vesicles (EVs) with high therapeutic potential which compared to their source cells, do not have the limitations of cell therapy. The angiogenic effect of the human umbilical cord MSCs (hUCMSCs)-derived small EVs are evaluated in the present work. Aim of this research is to show that hUCMSCs-derived small EVs cause differentiation of genes involved in angiogenesis like and .

Materials And Methods: In this experimental study, MSCs were isolated from the human umbilical cord, and after confirming their identities, their secreted EVs (including exosomes) were extracted by ultracentrifugation. The isolated small EVs were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), bicinchoninic acid assay (BCA), and Western Blotting. Then, the human umbilical vein endothelial cells (HUVECs) were treated with derived small EVs for 72 hours, and the expression of the angiogenic factors including and was evaluated by quantitative real-time-polymerase chain reaction (qPCR). Angiogenesis was also evaluated via a tube formation assay.

Results: The results demonstrated that and could be elevated 2, 2, 3.5, and 2 times, respectively, in EVs treated HUVECs, and derivative EVs can encourage tube formation in HUVECs.

Conclusion: These findings imply that hUCMSCs-derived small EVs are valuable resources in promoting angiogenesis and are very promising in cell-free therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663965PMC
http://dx.doi.org/10.22074/cellj.2022.8275DOI Listing

Publication Analysis

Top Keywords

small evs
20
human umbilical
16
umbilical cord
12
hucmscs-derived small
12
evs
9
mesenchymal stem
8
extracellular vesicles
8
tube formation
8
small
6
angiogenesis
6

Similar Publications

Salivary extracellular vesicles isolation methods impact the robustness of downstream biomarkers detection.

Sci Rep

December 2024

Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France.

Extracellular vesicles (EVs), crucial mediators in cell-to-cell communication, are implicated in both homeostatic and pathological processes. Their detectability in easily accessible peripheral fluids like saliva positions them as promising candidates for non-invasive biomarker discovery. However, the lack of standardized methods for salivary EVs isolation greatly limits our ability to study them.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) play a crucial role in intraspecies and interspecies communication, significantly influencing physiological and pathological processes. Outer membrane vesicles (OMVs) secreted by Gram-negative bacteria are rich in components from the parent cells and are important for bacterial communication, immune evasion, and pathogenic mechanisms. However, the extraction and purification of OMVs face numerous challenges due to their small size and heterogeneity.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) are essential for cell-to-cell communication because they transport functionally active molecules, including proteins, RNA, and lipids, from secretory cells to nearby or distant target cells. Seminal plasma contains a large number of EVs (sEVs) that are phenotypically heterogeneous. The aim of the present study was to identify the RNA species contained in two subsets of porcine sEVs of different sizes, namely small sEVs (S-sEVs) and large sEVs (L-sEVs).

View Article and Find Full Text PDF

The endoplasmic reticulum as a cradle for virus and extracellular vesicle secretion.

Trends Cell Biol

December 2024

Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR9004, Université Montpellier, Montpellier, France. Electronic address:

Extracellular vesicles (EVs) are small membranous carriers of protein, lipid, and nucleic acid cargoes and play a key role in intercellular communication. Recent work has revealed the previously under-recognized participation of endoplasmic reticulum (ER)-associated proteins (ERAPs) during EV secretion, using pathways reminiscent of viral replication and secretion. Here, we present highlights of the literature involving ER/ERAPs in EV biogenesis and propose mechanistic parallels with ERAPs exploited during viral infections.

View Article and Find Full Text PDF

Ultrasonication outperforms electroporation for extracellular vesicle cargo depletion.

Extracell Vesicle

December 2024

The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA.

Extracellular vesicles (EVs), submicron-sized membranous structures released by cells, serve as vehicles of tissue-specific proteins and nucleic acids, facilitating intercellular communication and playing roles in pathophysiological processes. Leveraging their unique characteristics, EVs have emerged as promising drug delivery nanocarriers. Electroporation (EP) and ultrasonication (US) are among the prevalent techniques used for loading exogenous drugs into EVs owing to their simplicity and efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!