Background: Mesenchymal stem cells (MSCs) driven gene directed enzyme prodrug therapy is a promising approach to deliver therapeutic agents to target heterogenous solid tumours. To democratize such a therapy, cryopreservation along with cold chain transportation is an essential part of the logistical process and supply chain. Previously, we have successfully engineered MSCs by a non-viral DNA transfection approach for prolonged and exceptionally high expression of the fused transgene cytosine deaminase, uracil phosphoribosyl transferase and green fluorescent protein (CD::UPRT::GFP). The aim of this study was to determine the effects of cryopreservation of MSCs engineered to highly overexpress this cytoplasmic therapeutic transgene.

Methods: Modified MSCs were preserved in a commercially available, GMP-grade cryopreservative-CryoStor10 (CS10) for up to 11 months. Performance of frozen-modified MSCs was compared to freshly modified equivalents in vitro. Cancer killing potency was evaluated using four different cancer cell lines. Migratory potential was assessed using matrigel invasion assay and flow cytometric analysis for CXCR4 expression. Frozen-modified MSC was used to treat canine patients via intra-tumoral injections, or by intravenous infusion followed by a daily dose of 5-flucytosine (5FC).

Results: We found that cryopreservation did not affect the transgene expression, cell viability, adhesion, phenotypic profile, and migration of gene modified canine adipose tissue derived MSCs. In the presence of 5FC, the thawed and freshly modified MSCs showed comparable cytotoxicity towards one canine and three human cancer cell lines in vitro. These cryopreserved cells were stored for about a year and then used to treat no-option-left canine patients with two different types of cancers and notably, the patients showed progression-free interval of more than 20 months, evidence of the effectiveness in treating spontaneously occurring cancers.

Conclusion: This study supports the use of cryopreserved, off-the-shelf transiently transfected MSCs for cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663191PMC
http://dx.doi.org/10.1186/s13287-022-03198-zDOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
8
stem cells
8
cytoplasmic therapeutic
8
cancer treatment
8
mscs
8
modified mscs
8
freshly modified
8
cancer cell
8
cell lines
8
canine patients
8

Similar Publications

Curcumin liposomes alleviate senescence of bone marrow mesenchymal stem cells by activating mitophagy.

Sci Rep

December 2024

Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.

The senescence of mesenchymal stem cells (MSCs) is closely related to aging and degenerative diseases. Curcumin exhibits antioxidant and anti-inflammatory effects and has been extensively used in anti-cancer and anti-aging applications. Studies have shown that curcumin can promote osteogenic differentiation, autophagy and proliferation of MSCs.

View Article and Find Full Text PDF

Treatment of complex craniofacial deformities is still a challenge for medicine and dentistry because few approach therapies are available on the market that allow rehabilitation using 3D-printed medical devices. Thus, this study aims to create a scaffold with a morphology that simulates bone tissue, able to create a favorable environment for the development and differentiation of osteogenic cells. Moreover, its association with Plenum Guide, through cell-based tissue engineering (ASCs) for guided bone regeneration in critical rat calvarial defects.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have been widely used in the treatment of various inflammatory diseases. The inadequate understanding of MSCs and their heterogeneity can impact the immune environment, which may be the cause of the good outcomes of MSCs-based therapy that cannot always be achieved. Recently, stem cells from human exfoliated deciduous teeth (SHED) showed great potential in inflammatory and autoimmune diseases due to their immature properties compared with MSCs.

View Article and Find Full Text PDF

Exosomes derived from umbilical cord mesenchymal stem cells promote healing of complex perianal fistulas in rats.

Stem Cell Res Ther

December 2024

National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China.

Background: Complex perianal fistulas, challenging to treat and prone to recurrence, often require surgical intervention that may cause fecal incontinence and lower quality of life due to large surgical wounds and potential sphincter damage. Human umbilical cord-derived MSCs (hUC-MSCs) and their exosomes (hUCMSCs-Exo) may promote wound healing.

Methods: This study assessed the efficacy, mechanisms, and safety of these exosomes in treating complex perianal fistulas in SD rats.

View Article and Find Full Text PDF

Background: Promoting muscle regeneration through stem cell therapy has potential risks. We investigated the effect of umbilical cord mesenchymal stem cells (UMSCs) Exosomes (Exo) Follistatin on muscle regeneration.

Methods: The Exo was derived from UMSCs cells and was utilized to affect the mice muscle injury model and C2C12 cells myotubes atrophy model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!