Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Single sample pathway analysis (ssPA) transforms molecular level omics data to the pathway level, enabling the discovery of patient-specific pathway signatures. Compared to conventional pathway analysis, ssPA overcomes the limitations by enabling multi-group comparisons, alongside facilitating numerous downstream analyses such as pathway-based machine learning. While in transcriptomics ssPA is a widely used technique, there is little literature evaluating its suitability for metabolomics. Here we provide a benchmark of established ssPA methods (ssGSEA, GSVA, SVD (PLAGE), and z-score) alongside the evaluation of two novel methods we propose: ssClustPA and kPCA, using semi-synthetic metabolomics data. We then demonstrate how ssPA can facilitate pathway-based interpretation of metabolomics data by performing a case-study on inflammatory bowel disease mass spectrometry data, using clustering to determine subtype-specific pathway signatures.
Results: While GSEA-based and z-score methods outperformed the others in terms of recall, clustering/dimensionality reduction-based methods provided higher precision at moderate-to-high effect sizes. A case study applying ssPA to inflammatory bowel disease data demonstrates how these methods yield a much richer depth of interpretation than conventional approaches, for example by clustering pathway scores to visualise a pathway-based patient subtype-specific correlation network. We also developed the sspa python package (freely available at https://pypi.org/project/sspa/ ), providing implementations of all the methods benchmarked in this study.
Conclusion: This work underscores the value ssPA methods can add to metabolomic studies and provides a useful reference for those wishing to apply ssPA methods to metabolomics data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9664704 | PMC |
http://dx.doi.org/10.1186/s12859-022-05005-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!