Hypertrophic and fibrotic human PKD hearts are associated with macrophage infiltration and abnormal TGF-β signaling.

Cell Tissue Res

Department of Biomedical and Pharmaceutical Sciences, Chapman University, 9401 Jeronimo Road, Irvine, CA, 92618-1908, USA.

Published: January 2023

Autosomal dominant polycystic kidney disease (PKD) is a hereditary kidney disorder which can affect cardiovascular system. Cardiac hypertrophy and cardiomyopathy in PKD have been reported by echocardiography analyses, but histopathology analyses of human PKD hearts have never been examined. The current studies evaluated human heart tissues from five subjects without PKD (non-PKD) and five subjects with PKD. Our histopathology data of human PKD hearts showed an increased extracellular matrix associated with cardiac hypertrophy and fibrosis. Hypertrophy- and fibrosis-associated pathways involving abnormal cardiac structure were next analyzed. We found that human PKD myocardium was infiltrated by inflammatory macrophage M1 and M2; expression of transforming growth factor (TGF-β) and its receptor were upregulated with overexpression of pSmad3 and β-catenin. Because patients with PKD have an abnormal kidney function that could potentially affect heart structure, we used a heart-specific PKD mouse model to validate that cardiac hypertrophy and fibrosis were independent from polycystic kidney. In summary, our data show that hearts from human PKD were characterized by hypertrophy, interstitial fibrosis, perivascular fibrosis, and conduction system fibrosis with upregulated TGF-β and its receptor. We suggest that such structural abnormalities may predispose to systolic and diastolic cardiac dysfunction in the PKD myocardium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100231PMC
http://dx.doi.org/10.1007/s00441-022-03704-yDOI Listing

Publication Analysis

Top Keywords

human pkd
20
pkd
12
pkd hearts
12
cardiac hypertrophy
12
polycystic kidney
8
subjects pkd
8
hypertrophy fibrosis
8
pkd myocardium
8
tgf-β receptor
8
human
6

Similar Publications

Anti-Müllerian hormone (AMH) protects the ovarian reserve from chemotherapy, and this effect is most pronounced with Doxorubicin (DOX). However, DOX toxicity and AMH rescue mechanisms in the ovary have remained unclear. Herein, we characterize the consequences of these treatments in ovarian cell types using scRNAseq.

View Article and Find Full Text PDF

A novel rapalog shows improved safety vs. efficacy in a human organoid model of polycystic kidney disease.

Stem Cell Reports

January 2025

Department of Medicine, Division of Nephrology, Institute for Stem Cell & Regenerative Medicine, and Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Plurexa LLC, Seattle, WA 98109, USA. Electronic address:

The mammalian target of rapamycin (mTOR) pathway is a therapeutic target in polycystic kidney disease (PKD), but mTOR inhibitors such as everolimus have failed to show efficacy at tolerated doses in clinical trials. Here, we introduce AV457, a novel rapalog developed to reduce side effects, and assess its dose-dependent safety and efficacy versus everolimus in PKD1 and PKD2 human kidney organoids, which form cysts in a PKD-specific way. Both AV457 and everolimus reduce cyst growth over time.

View Article and Find Full Text PDF

KDIGO 2025 clinical practice guideline for the evaluation, management, and treatment of autosomal dominant polycystic kidney disease (ADPKD): executive summary.

Kidney Int

February 2025

Institute of Physiology, University of Zurich, Zurich, Switzerland; Division of Nephrology, Cliniques universitaires Saint-Luc, UCLouvain Medical School, Brussels, Belgium. Electronic address:

The Kidney Disease: Improving Global Outcomes (KDIGO) 2025 Clinical Practice Guideline for the Evaluation, Management, and Treatment of Autosomal Dominant Polycystic Kidney Disease (ADPKD) represents the first KDIGO guideline on this subject. Its scope includes nomenclature, diagnosis, prognosis, and prevalence; kidney manifestations; chronic kidney disease (CKD) management and progression, kidney failure, and kidney replacement therapy; therapies to delay progression of kidney disease; polycystic liver disease; intracranial aneurysms and other extrarenal manifestations; lifestyle and psychosocial aspects; pregnancy and reproductive issues; pediatric issues; and approaches to the management of people with ADPKD. The guideline has been developed with patient partners, clinicians, and researchers around the world, with the goal to generate a useful resource for healthcare providers and patients by providing actionable recommendations.

View Article and Find Full Text PDF

Advances in CRISPR-Cas systems for kidney diseases.

Prog Mol Biol Transl Sci

January 2025

Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India. Electronic address:

Recent advances in CRISPR-Cas systems have revolutionised the study and treatment of kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), lupus nephritis (LN), and polycystic kidney disease (PKD). CRISPR-Cas technology offers precise and versatile tools for genetic modification in monogenic kidney disorders such as PKD and Alport syndrome. Recent advances in CRISPR technology have also shown promise in addressing other kidney diseases like AKI, CKD, and DKD.

View Article and Find Full Text PDF

Polycystic kidney diseases (PKD) are genetic disorders which disrupt kidney architecture and function. Autosomal recessive PKD (ARPKD) is a rare form of PKD, caused by mutations in PKHD1, and clinically more severe than the more common autosomal dominant PKD (ADPKD). Prior studies have implicated Hedgehog (Hh) signaling in ADPKD, with increased levels of Hh components in experimental ADPKD and reduced cystogenesis following pharmacological Hh inhibition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!