Natural allelic variation confers high resistance to sweet potato weevils in sweet potato.

Nat Plants

Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou, China.

Published: November 2022

Sweet potato (Ipomoea batatas L.) is a major root crop worldwide. Sweet potato weevils (SPWs) pose one of the most significant challenges to sweet potato production in tropical and subtropical regions, causing deleterious economic and environmental effects. Characterizing the mechanisms underlying natural resistance to SPWs is therefore crucial; however, the genetic basis of host SPW resistance (SPWR) remains unclear. Here we obtained two sweet potato germplasm with high SPWR and, by map-based cloning, revealed two major SPW-resistant genes-SPWR1 and SPWR2-that are important regulators of natural defence against SPWs. The SPW-induced WRKY transcriptional factor SPWR1 directly activates the expression of SPWR2, and SPWR2, the conserved dehydroquinate synthase, promotes the accumulation of quinate derivative metabolites that confer SPWR in sweet potato. Generally, our results provide new insights into the molecular mechanism underlying sweet potato-SPW interactions and will aid future efforts to achieve eco-friendly SPW management.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41477-022-01272-1DOI Listing

Publication Analysis

Top Keywords

sweet potato
28
sweet
8
potato weevils
8
potato
7
natural allelic
4
allelic variation
4
variation confers
4
confers high
4
high resistance
4
resistance sweet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!