Glyphosate-based herbicides can be harmful to the environment and human health. Especially in developing countries, these herbicides are often used indiscriminately in agricultural and urban areas. Here, we optimized a simple and efficient flow injection-based spectrophotometric method to monitor environmentally relevant glyphosate concentrations in surface waters. The method was then used to assess the environmental mobility of glyphosate in Southeast Brazil by monitoring surface runoff from experimental agricultural soil plots that received glyphosate applications in 2015. Further, water samples from low-order streams were collected in five agricultural, urban, and natural areas, as well as from the 5th-order Rio das Mortes during the rainy season. Finally, 20 drinking water sources were sampled in urban, rural, and agricultural areas. Runoff from reference plots without glyphosate application showed concentrations below the method's detection limit of 0.49 mg.L, whereas runoff from plots with standard glyphosate application had concentrations between 1.24 and 6.1 mg.L. Similarly, concentrations in natural stream water were below the detection limit, whereas agricultural streams had concentrations of up to 3.7 mg.L (average: 0.97 mg.L). In an agricultural stream monitored weekly, concentration peaks were observed after glyphosate applications by farmers, and concentrations were correlated to stream discharge. Urban streams had concentrations of up to 5.8 mg.L (average: 2.6 mg.L), but samples from the catchment's major river were mostly below detection limits, illustrating the dilution of urban and agricultural runoff in high-order rivers. In the sampled drinking water resources, glyphosate pollution occurred mainly in the rainy season, with detectable concentrations between 0.5 and 8.7 mg.L in 80% of the sampled drinking water sources. In conclusion, our results suggest considerable environmental mobility of glyphosate in the studied Southeast Brazilian catchment. Substantial pollution, well above national and international limits, was detected in surface runoff, stream water, and drinking water resources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-24167-2 | DOI Listing |
Environ Geochem Health
January 2025
The Fifth Prospecting Team of Shandong Coal Geology Bureau, Jinan, 250100, China.
Extensive agricultural regions commonly face issues of poor groundwater management, non-standard agricultural production practices, and unordered discharge of domestic pollution, leading to a continuous decline in groundwater quality and a sharp increase in risks. A comprehensive understanding of groundwater conditions and pollution is a crucial step in effectively addressing the water quality crisis. This study employs the Comprehensive Water Quality Index, Irrigation parameter, and Pollution Index to comprehensively investigate the groundwater quality in a typical agricultural area in Shandong, China, and assesses the suitability of groundwater for irrigation and the risks to human health.
View Article and Find Full Text PDFWater Sci Technol
January 2025
China Construction Fifth Engineering Division Co., Ltd, Changsha, Hunan 410004, China.
Road runoff underwent treatment using a filter filled with sludge from drinking water treatment plants to assess its capacity for removing dissolved organic matter (DOM). This evaluation utilized resin fractionation, gel permeation chromatography, three-dimensional excitation-emission matrix fluorescence spectroscopy, and UV-Visible spectroscopy. The filter demonstrated enhanced efficiency in removing dissolved organic carbon, achieving removal rates between 70 and 80%.
View Article and Find Full Text PDFJ Water Health
January 2025
Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan.
The discharge of sewage effluent is a major source of microbial contamination in drinking water sources, necessitating a comprehensive investigation of its impact on pathogenic bacterial communities. This study utilized full-length 16S rRNA gene amplicon sequencing to identify putative pathogenic bacteria and analyze their community structures in drinking water sources subjected to different levels of fecal pollution: urban rivers with low, moderate, and high sewage effluent mixing ratios, and mountain streams with minimal human impact. The sewage effluent itself was also analyzed.
View Article and Find Full Text PDFJ Water Health
January 2025
Epidemiology and Health Economics Research (EHER), Universidad Científica del Sur, Lima, Peru.
This study aimed to estimate the percentage of households with intermittent water supply (IWS) in Peru and determine the association between socioeconomic characteristics and the presence of IWS. The National Household Surveys (ENAHO) of 2017, 2018, 2019, 2019, 2021, and 2022 were used. IWS was defined as a piped water supply for less than 24 hours per day, one or more days per week.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
In general, ghrelin is known as one of the orexigenic hormones in mammals. On the other hand, it has been shown that ghrelin inhibits water intake, which appear to be inconsistent with its role in the feeding response. In this study, the effect of ghrelin on water intake was comprehensively addressed using conscious seawater-acclimated eels known as an experimental model for water drinking behaviour.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!