Collective motion of active particles exhibiting non-reciprocal orientational interactions.

Sci Rep

Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany.

Published: November 2022

We present a Brownian dynamics study of a 2D bath of active particles interacting among each other through usual steric interactions and, additionally, via non-reciprocal avoidant orientational interactions. We motivate them by the fact that the two flagella of the alga Chlamydomonas interact sterically with nearby surfaces such that a torque acts on the alga. As expected, in most cases such interactions disrupt the motility-induced particle clustering in active baths. Surprisingly, however, we find that the active particles can self-organize into collectively moving flocks if the range of non-reciprocal interactions is close to that of steric interactions. We observe that the flocking motion can manifest itself through a variety of structural forms, spanning from single dense bands to multiple moderately-dense stripes, which are highly dynamic. The flocking order parameter is found to be only weakly dependent on the underlying flock structure. Together with the variance of the local-density distribution, one can clearly group the flocking motion into the two separate band and dynamic-stripes states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663567PMC
http://dx.doi.org/10.1038/s41598-022-23597-9DOI Listing

Publication Analysis

Top Keywords

active particles
12
orientational interactions
8
steric interactions
8
flocking motion
8
interactions
6
collective motion
4
active
4
motion active
4
particles exhibiting
4
exhibiting non-reciprocal
4

Similar Publications

The cytoplasm exhibits viscoelastic properties, displaying both solid and liquid-like behavior, and can actively regulate its mechanical attributes. The cytoskeleton is a major regulator among the numerous factors influencing cytoplasmic mechanics. We explore the interdependence of various cytoskeletal filaments and the impact of their density on cytoplasmic viscoelasticity.

View Article and Find Full Text PDF

Microfluidic impedance cytometry (MIC) is a label-free technique that characterizes individual flowing particles/cells based on their interaction with a multifrequency electric field. The technique has been successfully applied in different scenarios including life-science research, diagnostics, and environmental monitoring. The aim of this review is to illustrate the fascinating opportunities enabled by the integration of MIC with other microfluidic tools.

View Article and Find Full Text PDF

Duchenne muscular dystrophy is a neuromuscular disease with an overall incidence of between 1 in 5,000 newborn males. Carriers may manifest progressive muscle weakness, resulting from the progressive degeneration of skeletal muscles, generating cardiac and respiratory disorders. Considering the lack of effective treatments, different therapeutic approaches have been developed, such as protein synthesis and extracellular matrix derivatives that can be used to improve muscle regeneration, maintenance, or repair.

View Article and Find Full Text PDF

Smart Stimuli-responsive Nanogels: A Potential Tool for Targeted Drug Delivery.

Curr Pharm Des

January 2025

Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Kingdom of Saudi Arabia.

Nanogels (NGs) are presently the focus of extensive research because of their special qualities, including minimal particle size, excellent encapsulating efficacy, and minimizing the breakdown of active compounds. As a result, NGs are great candidates for drug delivery systems. Cross-linked nanoparticles (NPs) called stimulus-responsive NGs are comprised of synthetic, natural, or a combination of natural and synthetic polymers.

View Article and Find Full Text PDF

Construction and optimization of stable atomically dispersed metal sites on SiO surfaces are important yet challenging topics. In this work, we developed the amino group-assisted atomic layer deposition strategy to deposit the atomically dispersed Pt on SiO support for the first time, in which the particle size and ratio of Pt entities from single atom (Pt) to atomic cluster (Pt ) and nanoparticle (Pt ) on the SiO surface were well modulated. We demonstrated the importance of dual-site synergy for optimizing the activity of single-atom catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!