Psoriasis is a chronic skin disorder characterized by epidermal keratinocyte hyperproliferation and inflammatory infiltration. CCN1 (also termed CYR61 or cysteine-rich angiogenic inducer 61) is an extracellular matrix-associated protein that is involved in multiple physiological functions. In psoriasis, we recently demonstrated that the overexpression of CCN1 promoted keratinocyte proliferation and activation. Furthermore, CCN1 was highly expressed in psoriatic skin lesions from psoriasis vulgaris patients. Here, we dissect the underlying molecular mechanism in imiquimod (IMQ) and interleukin (IL)-23-induced psoriasis-like models. Our results demonstrate that CCN1 can significantly upregulate IL-36 production in the murine skin of IMQ and IL-23-induced psoriasis-like models. Injection of CCN1-neutralizing antibody improved epidermal acanthosis and significantly reduced IL-36 production in vivo. These results suggest that CCN1 can be a critical upstream pro-inflammatory factor in psoriasis. In primary normal human epidermal keratinocytes, we demonstrated that CCN1 can selectively induced the production of IL-36α and IL-36γ through the activation of the protein kinase B (AKT)/nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and extracellular-regulated kinase (ERK)/CCAAT/enhancer binding protein β (CEBPβ) signaling pathways via integrin receptor α6β1 in vitro. Our results suggest that targeting CCN1 can be a potential therapeutic strategy for psoriasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1346-8138.16611 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!