Formation of organic chloride in the treatment of textile dyeing sludge by Fenton system.

J Environ Sci (China)

Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.

Published: March 2023

In the oxidation treatment of textile dyeing sludge, the quantitative and transformation laws of organic chlorine are not clear enough. Thus, this study mainly evaluated the treatment of textile dyeing sludge by Fenton and Fenton-like system from the aspects of the influence of Cl, the removal of polycyclic aromatic hydrocarbons (PAHs) and organic carbon, and the removal and formation mechanism of organic chlorine. The results showed that the organic halogen in sludge was mainly hydrophobic organic chlorine, and the content of adsorbable organic chlorine (AOCl) was 0.30 mg/g (dry sludge). In the Fenton system with pH=3, 500 mg/L Cl, 30 mmol/L Fe and 30 mmol/L HO, the removal of phenanthrene was promoted by chlorine radicals (•Cl), and the AOCl in sludge solid phase increased to 0.55 mg/g (dry sludge) at 30 min. According to spectral analysis, it was found that •Cl could chlorinate aromatic and aliphatic compounds (excluding PAHs) in solid phase at the same time, and eventually led to the accumulation of aromatic chlorides in solid phase. Strengthening the oxidation ability of Fenton system increased the formation of organic chlorines in liquid and solid phases. In weak acidity, the oxidation and desorption of superoxide anion promoted the removal and migration of PAHs and organic carbon in solid phase, and reduced the formation of total organic chlorine. The Fenton-like system dominated by non-hydroxyl radical could realize the mineralization of PAHs, organic carbon and organic chlorines instead of migration. This paper builds a basis for the selection of sludge conditioning methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2021.11.024DOI Listing

Publication Analysis

Top Keywords

organic chlorine
20
solid phase
16
treatment textile
12
textile dyeing
12
dyeing sludge
12
sludge fenton
12
fenton system
12
pahs organic
12
organic carbon
12
organic
11

Similar Publications

Red-shifted optical absorption induced by donor-acceptor-donor π-extended dibenzalacetone derivatives.

RSC Adv

January 2025

Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal Rural do Semi-Árido (UFERSA) CEP 59625-900 Mossoró RN Brazil

Chalcones demonstrate significant absorption in the near ultraviolet-visible spectrum, making them valuable for applications such as solar cells, light-emitting diodes, and nonlinear optics. This study investigates four dibenzalacetone derivatives (DBAd), DBA, DBC, DEP, and DMA, examining the impact of electron-donating and electron-withdrawing groups and conjugation elongation on their electronic structure in solvents of varying polarities. Using the Polarizable Continuum Model (PCM) and time-dependent density functional theory (TD-DFT), we characterized the excited states of these compounds.

View Article and Find Full Text PDF

Light-dependent Br-org production in terrestrial plants under acetaminophen stress and the bromination mechanisms mediated by photosystem.

J Environ Sci (China)

July 2025

School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, Shandong University, Qingdao 266237, China; Laboratory of Marine Ecological Environment in Universities of Shandong, Shandong University, Qingdao 266237, China; Qingdao Key Laboratory of Marine Pollutant Prevention, Shandong University, Qingdao 266237, China; Shandong Kenli Petrochemical Group Co., Ltd., Dongying 257500, China. Electronic address:

Due to the endocrine toxicity, neurotoxic, and reproductive toxicity to organisms, the sources and risks of brominated organic pollutants have attracted widespread attention. However, knowledge gaps remain in the bromination processes of emerging phenolic pollutants in plants, which may increase the potential health risk associated with food exposure. Our study discovered that light induced generation and accumulation of more toxic brominated organic compounds (Br-org) in lettuce leaves under the stress of acetaminophen (ACE) than that without light, as evidenced by an increase in C-Br bond intensity in FTIR analysis.

View Article and Find Full Text PDF

Effect of spring runoff on 2,6-dichloro-1,4-benzoquinone formation during water treatment.

J Environ Sci (China)

July 2025

Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada. Electronic address:

This study investigated the impacts of spring runoff on the formation of halobenzoquinones (HBQs) and their correlation with common water quality parameters (WQPs) and aromatic amino acids (AAs) in source water. Source water and treated water samples were collected at two drinking water treatment plants in 2021, 2022, and 2023. HBQs and aromatic AAs were analyzed using solid phase extraction with high performance liquid chromatography-tandem mass spectrometry methods.

View Article and Find Full Text PDF

Selective gold extraction from e-waste leachate via sulfur-redox mechanisms using sulfhydryl-functionalized MOFs.

Water Res

January 2025

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China. Electronic address:

Urban mining of precious metals from electronic waste (e-waste) offers a dual advantage by addressing solid waste management challenges and supplying high-value metals for diverse applications. However, traditional extraction methods generally suffer from poor selectivity and limited capacity in complex acidic leachate. Herein, we present a sulfhydryl-functionalized zirconium-based metal-organic framework (Zr-MSA-AA) as a recyclable and highly selective adsorbent for efficient gold recovery.

View Article and Find Full Text PDF

Recovery of rare earths from end-of-life NdFeB permanent magnets from wind turbines.

ChemSusChem

January 2025

Spanish Scientific Research Council: Consejo Superior de Investigaciones Cientificas, Metalurgia Primaria y Reciclado de Materiales, SPAIN.

This work aims to recover rare earths from wind turbines NdFeB magnets through pyrometallurgical and hydrometallurgical techniques. First, a NdFeB hydride powder is obtained by decrepitation with hydrogen. Subsequently, this powder was subjected to a chlorination roasting process and successive leaching with water to bring the metals into solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!