High-efficiency photocatalysts are of great significance for the application of photocatalytic technology in water treatment. In this study, N/Cu co-doped ZnS nanosphere photocatalyst (N/Cu-ZnS) is synthesized by a hydrothermal method for the first time. After doping, the texture of nanosphere becomes loose, the nanometer diameter is reduced, making the specific surface area of catalyst increased from 34.73 to 101.59 m/g. The characterization results show that more ZnS (111) crystal planes are exposed by N/Cu co-doping; the calculations of density functional theory show that N/Cu co-doping can increase the catalytic activity of the ZnS (111) crystal plane, enhance the adsorption capacity of (111) crystal plane to O, and promote the generation of •O. The energy levels of the introduced impurities can be hybridized with the energy levels of S and Zn at the top of valence band and the bottom of conduction band, which makes the band gap narrower, thus enhancing the absorption of visible light. Compared with pure ZnS, the degradation rates of 2,4-dichlorophenol (2,4-DCP) and tetracycline (TC) by N/Cu-ZnS under visible light (>420 nm) are increased by 83.7 and 51 times, respectively. In this research, a promising photocatalyst for photocatalytic degradation of organic pollutants in wastewater is provided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2021.12.023 | DOI Listing |
Polymers (Basel)
December 2024
Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Resource use is crucial for the sustainable growth of energy and green low-carbon applications since the improper handling of biomass waste would have a detrimental effect on the environment. This paper used nano-ZnO and ammonium persulfate ((NH)SO, APS) as a template agent and heteroatom dopant, respectively. Using a one-step carbonization process in an inert atmosphere, the biomass waste furfural residue (FR) was converted into porous carbon (PC), which was applied to the supercapacitor electrode.
View Article and Find Full Text PDFJ Headache Pain
September 2024
Novartis Pharma GmbH, Nürnberg, Deutschland.
Background: Efficacy and safety of human monoclonal antibody erenumab used for migraine prophylaxis have been shown in clinical studies. APOLLON is an open-label, multi-center, single arm study, which permits dose adjustments of erenumab and includes an option for a drug holiday. The findings contribute to the accumulating long-term evidence regarding erenumab's tolerability and safety profile in individuals experiencing episodic and chronic migraines.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819, China.
There has been a growing interest in developing catalysts to enable the reversible iodine conversion reaction for high-performance aqueous zinc-iodine batteries (AZIBs). While diatomic catalysts (DACs) have demonstrated superior performance in various catalytic reactions due to their ability to facilitate synergistic charge interactions, their application in AZIBs remains unexplored. Herein, we present, for the first time, a DAC comprising Mn-Zn dual atoms anchored on a nitrogen-doped carbon matrix (MnZn-NC) for iodine loading, resulting in a high-performance AZIB with a capacity of 224 mAh g at 1 A g and remarkable cycling stability over 320,000 cycles.
View Article and Find Full Text PDFNanotechnology
July 2024
EMF Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu 630003, India.
Vertically aligned ZnO nanorods (NRs) were grown hydrothermally on the wide bandgap (∼3.86 - 4.04 eV) seed layers (SLs) of grain size ∼162 ± 35 nm, prepared using ball-milled derived ZnO powder.
View Article and Find Full Text PDFDalton Trans
April 2024
V. Bakul Institute for Superhard Materials, National Academy of Sciences of Ukra, ine, Kyiv 04074, Ukraine.
Spatially-ordered 1D nanocrystal-based semiconductor nanostructures possess distinct merits for photocatalytic reaction, including large surface area, fast carrier separation, and enhanced light scattering and absorption. Nevertheless, establishing a valid photo-carrier transmission channel is still crucial yet challenging for semiconductor heterostructures to realize efficient photocatalysis. In this work, spatially ordered NiOOH-ZnS/CdS heterostructures were constructed by sequential ZnS coating and NiOOH photo-deposition on multi-armed CdS, which consists of {112̄0}-faceted wurtzite nanorods grown epitaxially on {111}-faceted zinc blende core.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!