Ras suppressor 1 long form (RSU1L) silencing promotes apoptosis in invasive breast cancer cells.

Cell Signal

Cancer Metastasis and Adhesion Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus; Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus. Electronic address:

Published: January 2023

Ras Suppressor-1 (RSU1) is a cell-extracellular matrix (ECM) adhesion protein implicated in breast cancer (BC) cell metastasis. Nevertheless, its role in apoptosis is yet unknown. In the present study, we used bioinformatics tools to evaluate the association of RSU1 expression and BC patient survival, the expression of basic pro- and anti-apoptotic genes in metastatic BC samples and their correlation with the expression of RSU1. Then, we specifically depleted RSU1 long form (RSU1L) using a short hairpin RNA (shRNA) silencing approach in two BC cell lines, the non-invasive MCF-7 and the highly invasive MDA-MB-231-LM2 cells and assessed gene expression of pro-and anti-apoptotic genes, as well as cell survival and apoptosis. Our results showed that high RSU1 expression was correlated with poor survival and significant changes were found in the expression of apoptosis-related genes (PUMA, TP53, BCL-2 and BCL-XL) in metastatic BC. Moreover, silencing of the long and most common isoform of RSU1 (RSU1L) resulted in the upregulation of PUMA and TP53 and concomitant downregulation of anti-apoptotic BCL-2 and BCL-XL, with the effect being more prominent in invasive MDA-MB-231-LM2 cells. Finally, RSU1L depletion leads to a dramatic increase in apoptosis of MDA-MB-231-LM2 cells, while no change was observed in the apoptotic rate of MCF-7 cells. This is the first study linking RSU1L with apoptosis and provides evidence for its differential role in cell lines of different invasive potential. This indicates that RSU1L represses apoptosis in aggressive BC cells helping them evade cell death and survive.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2022.110522DOI Listing

Publication Analysis

Top Keywords

mda-mb-231-lm2 cells
12
long form
8
form rsu1l
8
breast cancer
8
rsu1 expression
8
anti-apoptotic genes
8
cell lines
8
invasive mda-mb-231-lm2
8
puma tp53
8
bcl-2 bcl-xl
8

Similar Publications

Ras suppressor 1 long form (RSU1L) silencing promotes apoptosis in invasive breast cancer cells.

Cell Signal

January 2023

Cancer Metastasis and Adhesion Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus; Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus. Electronic address:

Ras Suppressor-1 (RSU1) is a cell-extracellular matrix (ECM) adhesion protein implicated in breast cancer (BC) cell metastasis. Nevertheless, its role in apoptosis is yet unknown. In the present study, we used bioinformatics tools to evaluate the association of RSU1 expression and BC patient survival, the expression of basic pro- and anti-apoptotic genes in metastatic BC samples and their correlation with the expression of RSU1.

View Article and Find Full Text PDF

Metastatic lesions leading causes of the majority of deaths in patients with the breast cancer. The present study aimed to provide a comprehensive analysis of the differentially expressed genes (DEGs) in the brain (MDA-MB-231 BrM2) and lung (MDA-MB-231 LM2) metastatic cell lines obtained from breast cancer patients compared with those who have primary breast cancer. We identified 981 and 662 DEGs for brain and lung metastasis, respectively.

View Article and Find Full Text PDF

Long non-coding RNA ARHGAP5-AS1 inhibits migration of breast cancer cell via stabilizing SMAD7 protein.

Breast Cancer Res Treat

October 2021

Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), No. 280, Chong Qing South Rd, Shanghai, 200025, China.

Purpose: Tumor metastasis is the main cause of death from breast cancer patients and cell migration plays a critical role in cancer metastasis. Recent studies have shown long non-coding RNAs (lncRNAs) play an essential role in the initiation and progression of cancer. In the present study, the role of an LncRNA, Rho GTPase Activating Protein 5- Antisense 1 (ARHGAP5-AS1) in breast cancer was investigated.

View Article and Find Full Text PDF

AKT drives sustained motility following MEK inhibition via promoting SNAIL and AXL in MDA-MB-231 LM2.

Biochem Biophys Res Commun

July 2020

Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; KAIST Institute for BioCentury, Cancer Metastasis Control Center, Daejeon, Republic of Korea. Electronic address:

The adaptive activation of alternative signaling pathways contributes to acquired resistance against targeted cancer therapies. Our previous research has shown that blocking Ras/ERK signaling promotes PI3K/AKT signaling in the lung metastatic derivative of MDA-MB-231 (LM2). Because AKT activation was required to drive sustained cell motility following MEK suppression, we extend our research to elucidate how activation of the PI3K/AKT signaling drives sustained motility following MEK inhibition.

View Article and Find Full Text PDF

Tumour vasculature supports the growth and progression of solid cancers with both angiogenesis (endothelial cell proliferation) and vasculogenic mimicry (VM, the formation of vascular structures by cancer cells themselves) predictors of poor patient outcomes. Increased circulating platelet counts also predict poor outcome for cancer patients but the influence of platelets on tumour vasculature is incompletely understood. Herein, we show with in vitro assays that platelets did not influence angiogenesis but did actively inhibit VM formation by cancer cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!