Adenosine plays a very significant role in modulating striatal glutamatergic and dopaminergic neurotransmission. In the present essay we first review the extensive evidence that indicates this modulation is mediated by adenosine A and A receptors (ARs and ARs) differentially expressed by the components of the striatal microcircuit that include cortico-striatal glutamatergic and mesencephalic dopaminergic terminals, and the cholinergic interneuron. This microcircuit mediates the ability of striatal glutamate release to locally promote dopamine release through the intermediate activation of cholinergic interneurons. ARs and ARs are colocalized in the cortico-striatal glutamatergic terminals, where they form AR-AR and AR-cannabinoid CB receptor (CBR) heteromers. We then evaluate recent findings on the unique properties of AR-AR and AR-CBR heteromers, which depend on their different quaternary tetrameric structure. These properties involve different allosteric mechanisms in the two receptor heteromers that provide fine-tune modulation of adenosine and endocannabinoid-mediated striatal glutamate release. Finally, we evaluate the evidence supporting the use of different heteromers containing striatal adenosine receptors as targets for drug development for neuropsychiatric disorders, such as Parkinson's disease and restless legs syndrome, based on the ability or inability of the AR to demonstrate constitutive activity in the different heteromers, and the ability of some AR ligands to act preferentially as neutral antagonists or inverse agonists, or to have preferential affinity for a specific AR heteromer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2022.109329 | DOI Listing |
Int Immunopharmacol
December 2024
Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico; Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico. Electronic address:
Mast cells (MC) are crucial effectors in immediate allergic reactions. Monomeric IgE sensitizes MC and triggers various signaling responses. FcεRI/IgE/antigen crosslinking induces the release of several mediators, including bioactive lipids, but little is known about endocannabinoids (eCBs) secretion.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain.
Activation of cannabinoid CB receptors (CBR) by agonists induces analgesia but also induces cognitive impairment through the heteromer formed between CBR and the serotonin 5HT receptor (5HTR). This side effect poses a serious drawback in the therapeutic use of cannabis for pain alleviation. Peptides designed from the transmembrane helices of CBR, which are predicted to bind 5HTR and alter the stability of the CBR-5HTR heteromer, have been shown to avert CBR agonist-induced cognitive impairment while preserving analgesia.
View Article and Find Full Text PDFCells
December 2024
Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
Background: TRPC5 proteins form plasma membrane cation channels and are expressed in the nervous and cardiovascular systems. TRPC5 activation leads to cell depolarization and increases neuronal excitability, whereas a homologous TRPC1 inhibits TRPC5 function via heteromerization. The mechanism underlying the inhibitory effect of TRPC1 in TRPC5/TRPC1 heteromers remains unknown.
View Article and Find Full Text PDFAndrology
December 2024
Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
Background: Gonadotropins are glycoprotein hormones fundamental in the endocrine regulation of reproduction. They act on structurally similar members of G protein-coupled receptors (GPCRs) expressed exclusively in the gonads and support gametogenesis, sex steroid synthesis, and pregnancy. While it is a common opinion that the gonadotropin receptors act as a single molecule entity (monomer), increasing evidence underlines the formation of molecular complexes involving multiple receptors.
View Article and Find Full Text PDFNeuropharmacology
March 2025
Network Center for Biomedical Research in Neurodegenerative Diseases. CiberNed., Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Molecular Neurobiology Laboratory, Dept. Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain; School of Chemistry, Universitat de Barcelona, Barcelona, Spain. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!