Presynaptic adenosine receptor heteromers as key modulators of glutamatergic and dopaminergic neurotransmission in the striatum.

Neuropharmacology

Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907, L'Hospitalet de Llobregat, Spain. Electronic address:

Published: February 2023

Adenosine plays a very significant role in modulating striatal glutamatergic and dopaminergic neurotransmission. In the present essay we first review the extensive evidence that indicates this modulation is mediated by adenosine A and A receptors (ARs and ARs) differentially expressed by the components of the striatal microcircuit that include cortico-striatal glutamatergic and mesencephalic dopaminergic terminals, and the cholinergic interneuron. This microcircuit mediates the ability of striatal glutamate release to locally promote dopamine release through the intermediate activation of cholinergic interneurons. ARs and ARs are colocalized in the cortico-striatal glutamatergic terminals, where they form AR-AR and AR-cannabinoid CB receptor (CBR) heteromers. We then evaluate recent findings on the unique properties of AR-AR and AR-CBR heteromers, which depend on their different quaternary tetrameric structure. These properties involve different allosteric mechanisms in the two receptor heteromers that provide fine-tune modulation of adenosine and endocannabinoid-mediated striatal glutamate release. Finally, we evaluate the evidence supporting the use of different heteromers containing striatal adenosine receptors as targets for drug development for neuropsychiatric disorders, such as Parkinson's disease and restless legs syndrome, based on the ability or inability of the AR to demonstrate constitutive activity in the different heteromers, and the ability of some AR ligands to act preferentially as neutral antagonists or inverse agonists, or to have preferential affinity for a specific AR heteromer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2022.109329DOI Listing

Publication Analysis

Top Keywords

receptor heteromers
8
glutamatergic dopaminergic
8
dopaminergic neurotransmission
8
adenosine receptors
8
ars ars
8
cortico-striatal glutamatergic
8
striatal glutamate
8
glutamate release
8
heteromers
6
striatal
5

Similar Publications

FcεRI/PLC axis promotes anandamide synthesis and the formation of CB2-GPR55 heteromers, modulating cytokine production in mast cells.

Int Immunopharmacol

December 2024

Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico; Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico. Electronic address:

Mast cells (MC) are crucial effectors in immediate allergic reactions. Monomeric IgE sensitizes MC and triggers various signaling responses. FcεRI/IgE/antigen crosslinking induces the release of several mediators, including bioactive lipids, but little is known about endocannabinoids (eCBs) secretion.

View Article and Find Full Text PDF

Design of Small Non-Peptidic Ligands That Alter Heteromerization between Cannabinoid CB and Serotonin 5HT Receptors.

J Med Chem

January 2025

Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain.

Activation of cannabinoid CB receptors (CBR) by agonists induces analgesia but also induces cognitive impairment through the heteromer formed between CBR and the serotonin 5HT receptor (5HTR). This side effect poses a serious drawback in the therapeutic use of cannabis for pain alleviation. Peptides designed from the transmembrane helices of CBR, which are predicted to bind 5HTR and alter the stability of the CBR-5HTR heteromer, have been shown to avert CBR agonist-induced cognitive impairment while preserving analgesia.

View Article and Find Full Text PDF

Background: TRPC5 proteins form plasma membrane cation channels and are expressed in the nervous and cardiovascular systems. TRPC5 activation leads to cell depolarization and increases neuronal excitability, whereas a homologous TRPC1 inhibits TRPC5 function via heteromerization. The mechanism underlying the inhibitory effect of TRPC1 in TRPC5/TRPC1 heteromers remains unknown.

View Article and Find Full Text PDF

G protein-coupled receptor-receptor interactions in gonadal physiology.

Andrology

December 2024

Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.

Background: Gonadotropins are glycoprotein hormones fundamental in the endocrine regulation of reproduction. They act on structurally similar members of G protein-coupled receptors (GPCRs) expressed exclusively in the gonads and support gametogenesis, sex steroid synthesis, and pregnancy. While it is a common opinion that the gonadotropin receptors act as a single molecule entity (monomer), increasing evidence underlines the formation of molecular complexes involving multiple receptors.

View Article and Find Full Text PDF

GPR88 impairs the signaling of kappa opioid receptors in a heterologous system and in primary striatal neurons.

Neuropharmacology

March 2025

Network Center for Biomedical Research in Neurodegenerative Diseases. CiberNed., Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Molecular Neurobiology Laboratory, Dept. Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain; School of Chemistry, Universitat de Barcelona, Barcelona, Spain. Electronic address:

Article Synopsis
  • GPR88 is an orphan G protein-coupled receptor primarily found in the striatum, and its function is not well understood despite changes in its expression seen in Parkinson's disease models.
  • GPR88 was found to interact with the kappa-opioid receptor (KOR), and this interaction inhibits KOR-mediated signaling, as evidenced by experiments showing that GPR88 can modulate effects of KOR agonists in both cultured cells and primary striatal neurons.
  • The GPR88-KOR complexes were more common in specific neurons related to dopamine pathways, suggesting that understanding their relationship could have implications for conditions like neuropathic pain, Parkinson's disease, and neuropsychiatric disorders.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!