Sustainable curdlan biosynthesis by Rahnella variigena ICRI91 via alkaline hydrolysis of Musa sapientum peels and its edible, active and modified hydrogel for Quercetin controlled release.

Int J Biol Macromol

International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland.

Published: January 2023

Despite the high demand for curdlan (Curd), its industrial implementation has not reached a mature stage due to the high cost of simple sugar feed stocks. Herein, Musa sapientum peels hydrolysate (MPH) was proposed for the first time as a sustainable medium for Curd generation and as an ameliorated functional biomaterial for quercetin (Quer) sustained release. In this study, banana peels have been hydrolysed by 3 % NaOH catalyst/ 60 °C, yielding high concentration of glucose 20.5 ± 0.04 and 24.3 ± 0.11 g/L and reducing sugar amount, respectively. Meanwhile, a novel local Rahnella variigena ICRI91 strain was isolated from soil, that was useful for Curd production and identified by 16S rRNA analysis. Furthermore, three-batch fermentation models were carried out using MPH for obtaining a sufficient yield of Curd. R. variigena ICRI91 accumulated a satisfactory Curd concentration; 10.3 ± 0.25 g/L; using 60 g/L MPH. On the other hand, the strain produced an impressive Curd yield; 21.5 ± 0.13 g/L with an attained productivity of 0.179 ± 0.01 g/L/h and a sugar consumption of 68 ± 0.25 % as the MPH content increased to 100 g/L. For the first time, Curd hydrogel was modified by different amount of Xylitol (Xyl), reaching good mechanical performance; 3.1 MPa and 75 % for tensile strength (TS) and elongation at break (EB), respectively. Curd/Xyl (3/5) hydrogel was then integrated with nanometer-sized quercetin nanocrystals (Quer NCs, 83 ± 0.12 nm) with high colloidal stability of -23 ± 0.05 mV. The interconnected H- bonding between Xyl and Curd was confirmed by FTIR and SEM. The generated biomaterial was tailored to exhibit a sustained Quer release over 72 h. It also has improved antibacterial efficacy against four bacterial pathogens compared to that of a free drug. In recognition of these merits, an edible polymeric nanomaterial has been proposed for the functional food and biomedicine sectors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.11.080DOI Listing

Publication Analysis

Top Keywords

variigena icri91
12
rahnella variigena
8
musa sapientum
8
sapientum peels
8
curd
8
sustainable curdlan
4
curdlan biosynthesis
4
biosynthesis rahnella
4
icri91 alkaline
4
alkaline hydrolysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!