Natural organic matters (NOMs), omnipresent in natural water, challenge the toxicity assessment of pollutants to aquatic organisms due to their complex interactions with chemicals and organisms. Here, we investigated the combined toxicity of one solid NOM (black carbon, BC) or one soluble NOM (humic acid, HA) with antibiotics, roxithromycin (RTM) or gatifloxacin (GAT), to the cyanobacterium Synechocystis sp.. The NOMs alleviated the toxicity of RTM and GAT to Synechocystis sp., and BC had greater alleviation effects than HA due to its stronger adsorption to antibiotics. Antibiotics disturbed the photosynthesis of Synechocystis sp. significantly, which were also mitigated by BC and HA. Proteomic analysis showed that BC up-regulated the pathway of ribosome and photosynthetic antenna protein. GAT down-regulated the pathways of ABC transporter and oxidative phosphorylation. RTM interfered the pathway of porphyrin and chlorophyll metabolism. Furthermore, the addition of BC reduced the number of differentially expressed proteins caused by antibiotics, corroborating its mitigation effects on the toxicity of antibiotics. The disturbance of HA on the pathway of ABC transporters inhibited the internalization of RTM, thus decreasing its toxicity. This study underscores the significance of NOMs in mediating the toxicity of organic pollutants to aquatic organisms in natural waters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2022.120646 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
EPFL: Ecole Polytechnique Federale de Lausanne, Department of Chemistry, Rue de Industries 17, 1050, Sion, SWITZERLAND.
Carbon perovskite solar cells (C-PSCs) represent a promising photovoltaic technology that addresses the long-term operating stability needed to compete with commercial Si solar cells. However, the poor interface contacts between the carbon electrode and the perovskite result in a gap between C-PSC's performances and state-of-the-art PSCs based on metallic back electrodes. In this work, Cu (II) phthalocyanine (CuPc) was rediscovered as an effective hole-transporting material (HTM) to be coupled with carbon electrodes.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.
The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.
View Article and Find Full Text PDFEcol Lett
January 2025
Department of Biology, University of Konstanz, Konstanz, Germany.
Quantifying how co-acting global change factors (GCFs) influence plant invasion is crucial for predicting future invasion dynamics. We did a meta-analysis to assess pairwise effects of five GCFs (elevated CO, drought, eutrophication, increased rainfall and warming) on native and alien plants. We found that alien plants, compared to native plants, suffered less or benefited more for four of the eight pairwise GCF combinations, and that all GCFs acted additively.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain.
The maritime transport sector poses significant air quality concerns, particularly in nearby cities. Ultrafine particles (UFP, diameter < 100 nm) are of particular concern due to their potential health impacts. This study measured particle number concentrations (PNC), size distributions (PNSD), and other pollutants including particulate matter (PM), nitrogen oxides (NO), black carbon (BC), sulfur dioxide (SO) and ozone (O), organic markers and trace elements at a major European harbor and an urban background (UB) location.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
NO is a significant primary atmospheric pollutant that plays a key role in atmospheric chemistry. It serves as a crucial precursor to photochemical smog, acid rain, and secondary particulate matter and is instrumental in determining the atmospheric oxidation capacity. In this review, we focus on the heterogeneous chemistry of NO, which has been demonstrated to significantly influence the sources and sinks of various nitrogen-containing species through field measurements and model simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!