Black carbon (BC) is released into the atmosphere in large quantities from different emission sources each year and poses a serious threat to human health. These BC possessed a variety of characteristics and different mediation abilities for the reactive oxygen species (ROS) generation. In this study, we collected BC (i.e., diesel BC, coal BC and wood BC) from three typica emission sources, and examined their mediation abilities to the oxidation of glutathione (GSH). Results showed that all three BC significantly promoted the GSH oxidation, and the mediation efficiencies were as follows: diesel BC > coal BC > wood BC. In comparison with the water-soluble fraction, the mediation abilities of three BC mainly came from their solid phase fractions. In the coal BC and wood BC systems, the oxidation of GSH was attributed to the catalysis of transition metals in BC. By contrast, the transition metals, phenolic -OH and persistent free radicals in diesel BC were identified as the active sites responsible for the GSH oxidation. In addition, the graphitic surface of diesel BC could synergize with these active sites to accelerate the oxidation of GSH. Under the catalysis of BC, dissolved oxygen was first reduced to ROS (O and HO) and then caused the GSH oxidation. These findings not only help to better assess the adverse health effects of different BC, but also deepen the understanding of the reaction mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2022.120647 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Faculty of Geography, Lomonosov Moscow State University, 119991, Moscow, Russia.
The content of 39 metals and metalloids (MMs) in submicron road dust (PM fraction) was studied in the traffic zone, residential courtyards with parking lots, and on pedestrian roads in parks in Moscow. The geochemical profiles of PM vary slightly between different types of roads and courtyards but differ significantly from those in parks. In Moscow, compared to other cities worldwide, submicron road dust contains less As, Sb, Mo, Cr, Cd, Sn, Tl, Ca, Rb, La, Y, U, but more Cu, Zn, Co, Fe, Mn, Ti, Zr, Al, V.
View Article and Find Full Text PDFSci Total Environ
January 2025
Direction Milieux et impacts sur le vivant, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France.
Emissions due to tires retread/repair and incineration are a cause of concern owing to the presence of nanoparticles in the products. The assessment exposure to humans hereto related is a challenge in an environmental context. The first object of this work is to develop a method to characterize the emission sources using online (counting and sizing) and offline measurements.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China.
Until now, mass spectrometry databases lack molecular information of most organosilicon oligomers, and risk models needing accurate molecular descriptors are unavailable for these emerging contaminants with thousands of monomers. To address this issue, based on molecular/fragment ions and relative abundance from GC-Orbitrap-MS, this study developed appropriate classification (accuracies = 0.750-0.
View Article and Find Full Text PDFBioprocess Biosyst Eng
January 2025
Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt.
The purpose of this review is to gain attention about intro the advanced and green technology that has dual action for both clean wastewater and produce energy. Water scarcity and the continuous energy crisis have arisen as major worldwide concerns, requiring the creation of ecologically friendly and sustainable energy alternatives. The rapid exhaustion of fossil resources needs the development of alternative energy sources that reduce carbon emissions while maintaining ecological balance.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
Conventional power generation methods have led to adverse environmental impacts. Thus, the need for a strategic transition to alternative energy sources arises. This study presents a comprehensive approach to sustainable solar energy deployment using multi-criteria decision-making (MCDM) techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!