The Bunyavirales order is the largest grouping of RNA viruses, comprising emerging and re-emerging human, plant and animal pathogens. Bunyaviruses have a global distribution and many members of the order are transmitted by arthropods. They have evolved a plethora of mechanisms to manipulate the regulatory processes of the infected cell to facilitate their own replicative cycle, in hosts of disparate phylogenies. Interest in virus-vector interactions is growing rapidly. However, current understanding of tick-borne bunyavirus cellular interaction is heavily biased to studies conducted in mammalian systems. In this short review, we summarise current understandings of how tick-borne bunyaviruses utilise major cellular pathways (innate immunity, apoptosis and RNAi responses) in mammalian or tick cells to facilitate virus replication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.coviro.2022.101278 | DOI Listing |
PLoS Pathog
November 2024
Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV), a novel bunyavirus primarily transmitted by Haemaphysalis longicornis, induces severe disease with a high mortality rate. N6-methyladenosine (m6A) is a prevalent internal chemical modification in eukaryotic mRNA that has been reported to regulate viral infection. However, the role of m6A modification during SFTSV infection remains elusive.
View Article and Find Full Text PDFPLoS Pathog
September 2024
State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China.
J Virol Methods
December 2024
Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, Changchun 130021, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China. Electronic address:
Nuomin virus (NOMV), an emerging tick-borne virus (TBVs) identified in 2020, has been associated with fever, headache, and potential liver dysfunction in infected individuals. This study presents a novel TaqMan real-time quantitative PCR method designed for the rapid, sensitive, and specific detection of NOMV, facilitating early diagnosis. Utilizing Beacon Designer software 8.
View Article and Find Full Text PDFViruses
August 2024
National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
Severe fever with thrombocytopenia syndrome virus (SFTSV), also known as the Dabie Banda virus, is an emerging tick-borne Bunyavirus that causes severe fever with thrombocytopenia syndrome (SFTS). Currently, symptomatic treatment and antiviral therapy with ribavirin and favipiravir are used in clinical management. However, their therapeutical efficacy is hardly satisfactory in patients with high viral load.
View Article and Find Full Text PDFAutophagy
January 2025
State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China.
Severe fever with thrombocytopenia syndrome is an emerging viral hemorrhagic fever caused by a tick-borne bunyavirus, severe fever with thrombocytopenia syndrome virus (SFTSV), with a high case fatality. We previously found that SFTSV nucleoprotein (NP) induces macroautophagy/autophagy to facilitate virus replication. However, the role of NP in antagonizing host innate immunity remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!