The Sabatier principle as a tool for discovery and engineering of industrial enzymes.

Curr Opin Biotechnol

Technical University of Denmark, Dept. of Biotechnology and Biomedicine, Sølvtofts Plads 224, DK-2800, Kgs. Lyngby, Denmark. Electronic address:

Published: December 2022

The recent breakthrough in all-atom, protein structure prediction opens new avenues for a range of computational approaches in enzyme design. These new approaches could become instrumental for the development of technical biocatalysts, and hence our transition toward more sustainable industries. Here, we discuss one approach, which is well-known within inorganic catalysis, but essentially unexploited in biotechnology. Specifically, we review examples of linear free-energy relationships (LFERs) for enzyme reactions and discuss how LFERs and the associated Sabatier Principle may be implemented in algorithms that estimate kinetic parameters and enzyme performance based on model structures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.copbio.2022.102843DOI Listing

Publication Analysis

Top Keywords

sabatier principle
8
principle tool
4
tool discovery
4
discovery engineering
4
engineering industrial
4
industrial enzymes
4
enzymes breakthrough
4
breakthrough all-atom
4
all-atom protein
4
protein structure
4

Similar Publications

The advancement of high-performance fast-charging materials has significantly propelled progress in electrochemical capacitors (ECs). Electrochemical capacitors store charges at the nanoscale electrode material-electrolyte interface, where the charge storage and transport mechanisms are mediated by factors such as nanoconfinement, local electrode structure, surface properties and non-electrostatic ion-electrode interactions. This Review offers a comprehensive exploration of probing the confined electrochemical interface using advanced characterization techniques.

View Article and Find Full Text PDF

Introduction: Improving adverse events following immunisation (AEFI) detection is vital for vaccine safety surveillance, as an early safety signal can help minimize risks. In February 2022, the World Health Organization reported a preliminary signal on sudden sensorineural hearing loss (SSNHL) following coronavirus disease 2019 (COVID-19) vaccination, 54 million persons in France received at least one dose, covering 78.8% of the population within a year.

View Article and Find Full Text PDF

Environmental challenges are rarely confined to national, disciplinary, or linguistic domains. Convergent solutions require international collaboration and equitable access to new technologies and practices. The ability of international, multidisciplinary and multilingual research teams to work effectively can be challenging.

View Article and Find Full Text PDF

Sabatier Optimal of Mn-N Single Atom Catalysts for Selective Oxidative Desulfurization.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.

Understanding the relationship of competitive adsorption between reactants is the prerequisite for high activity and selectivity in heterogeneous catalysis, especially the difference between the adsorption energies (E) of two reactive intermediates in Langmuir-Hinshelwood (L-H) models. Using oxidative dehydrogenation of hydrogen sulfide (HS-ODH) as a probe, we develop various metal single atoms on nitrogen-doped carbon (M-NDC) catalysts for controlling E-HS, E-O and investigating the difference in activity and selectivity. Combining theoretical and experimental results, a Sabatier relationship between the catalytic performance and E-O/E-HS emerges.

View Article and Find Full Text PDF
Article Synopsis
  • Adsorption energy plays a key role in catalysis, energy storage, and sensing, where too strong of an adsorption can lower reaction efficiency.
  • The study explored various two-dimensional semiconductor materials to create silicene-semiconductor heterojunctions and examined how changes in work function affect oxygen adsorption energy.
  • A theoretical model was developed to explain the relationship between work function and adsorption energy, ultimately improving catalytic efficiency and supporting the optimization of catalysts according to the Sabatier principle.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!