Fulminant lung fibrosis in non-resolvable COVID-19 requiring transplantation.

EBioMedicine

Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Advanced Cardiopulmonary Therapies and Transplantation at UTHealth/McGovern Medical School, Houston, TX, USA; UTHealth Pulmonary Center of Excellence, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA. Electronic address:

Published: December 2022

AI Article Synopsis

  • COVID-19 can cause serious lung problems, and in some cases, patients may need a lung transplant to survive.
  • Researchers studied lung samples from patients with severe COVID-19 to understand how lung damage happens quickly.
  • They found that certain genes that help create scar tissue in the lungs are expressed at high levels in COVID-19 patients, which could help explain why some people's lungs get worse so fast.

Article Abstract

Background: Coronavirus Disease 2019 (COVID-19) can lead to the development of acute respiratory distress syndrome (ARDS). In some patients with non-resolvable (NR) COVID-19, lung injury can progress rapidly to the point that lung transplantation is the only viable option for survival. This fatal progression of lung injury involves a rapid fibroproliferative response and takes on average 15 weeks from initial symptom presentation. Little is known about the mechanisms that lead to this fulminant lung fibrosis (FLF) in NR-COVID-19.

Methods: Using a pre-designed unbiased PCR array for fibrotic markers, we analyzed the fibrotic signature in a subset of NR-COVID-19 lungs. We compared the expression profile against control lungs (donor lungs discarded for transplantation), and explanted tissue from patients with idiopathic pulmonary fibrosis (IPF). Subsequently, RT-qPCR, Western blots and immunohistochemistry were conducted to validate and localize selected pro-fibrotic targets. A total of 23 NR-COVID-19 lungs were used for RT-qPCR validation.

Findings: We revealed a unique fibrotic gene signature in NR-COVID-19 that is dominated by a hyper-expression of pro-fibrotic genes, including collagens and periostin. Our results also show a significantly increased expression of Collagen Triple Helix Repeat Containing 1(CTHRC1) which co-localized in areas rich in alpha smooth muscle expression, denoting myofibroblasts. We also show a significant increase in cytokeratin (KRT) 5 and 8 expressing cells adjacent to fibroblastic areas and in areas of apparent epithelial bronchiolization.

Interpretation: Our studies may provide insights into potential cellular mechanisms that lead to a fulminant presentation of lung fibrosis in NR-COVID-19.

Funding: National Institute of Health (NIH) Grants R01HL154720, R01DK122796, R01DK109574, R01HL133900, and Department of Defense (DoD) Grant W81XWH2110032 to H.K.E. NIH Grants: R01HL138510 and R01HL157100, DoD Grant W81XWH-19-1-0007, and American Heart Association Grant: 18IPA34170220 to H.K.-Q. American Heart Association: 19CDA34660279, American Lung Association: CA-622265, Parker B. Francis Fellowship, 1UL1TR003167-01 and The Center for Clinical and Translational Sciences, McGovern Medical School to X.Y.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667270PMC
http://dx.doi.org/10.1016/j.ebiom.2022.104351DOI Listing

Publication Analysis

Top Keywords

lung fibrosis
12
fulminant lung
8
non-resolvable covid-19
8
lung injury
8
mechanisms lead
8
lead fulminant
8
nr-covid-19 lungs
8
nih grants
8
dod grant
8
american heart
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!