The microRNA (miRNA) gene cluster on chromosome 19, C19MC, is the largest primate-specific miRNA gene cluster. The 46 homologous miRNA genes in C19MC are highly expressed in the placenta, but repressed in other tissues by DNA methylation. Here, we found that the SET domain bifurcated 1(SETDB1), a histone H3-lysine 9 (H3K9)-specific methyltransferase 1, transcriptionally controls C19MC miRNA genes in a coordinated manner in human HAP1 cells. SETDB1 knockout (KO) resulted in the overexpression of C19MC miRNA genes, which was accompanied by a reduction of H3K9 trimethylation (H3K9me3) in the cluster. We found that SETDB1 specifically binds to and modifies the upstream promoter locus of C19MC with H3K9me3, suggesting its role as a C19MC repressor. Overexpression of C19MC miRNA genes was not related to DNA methylation because cytosine methylation levels were not altered in the C19MC of SETDB1 KO cells, indicating that SETDB1 KO does not cause DNA demethylation in the C19MC promoter and body regions. In conclusion, our results suggest that SETDB1 binding and H3K9 methylation at the C19MC promoter and body regions are responsible for the coordinated regulation of miRNA genes in the cluster.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2022.11.004 | DOI Listing |
Mol Cell Biochem
January 2025
Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
Ferroptosis is a novel, iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid reactive oxygen species (ROS) and mitochondrial shrinkage. It is closely associated with the onset and progression of various diseases, especially cancer, at all stages, making it a key focus of research for developing therapeutic strategies. Numerous studies have explored the role of microRNAs (miRNAs) in regulating ferroptosis by modulating the expression of critical genes involved in iron metabolism and lipid peroxidation.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, 14469, Potsdam, Germany.
Background: Depression constitutes a risk factor for osteoporosis, but underlying molecular and cellular mechanisms are not fully understood. MiRNAs influence gene expression and are carried by extracellular vesicles (EV), affecting cell-cell communication.
Aims: (1) Identify the difference in miRNA expression between depressed patients and healthy controls; (2) Analyze associations of these miRNAs with bone turnover markers; (3) Analyze target genes of differentially regulated miRNAs and predict associated pathways regarding depression and bone metabolism.
J Exp Bot
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China.
Flowering, a pivotal plant lifecycle event, is intricately regulated by environmental and endogenous signals via genetic and epigenetic mechanisms. Photoperiod is a crucial environmental cue that induces flowering by activating integrators through genetic and epigenetic pathways. However, the specific role of DNA methylation, a conserved epigenetic marker, in photoperiodic flowering remains unclear.
View Article and Find Full Text PDFMicroRNA-502-3p (MiR-502-3p), a synapse enriched miRNA is considerably implicated in Alzheimer's disease (AD). Our previous study found the high expression level of miR-502-3p in AD synapses relative to controls. Further, miR-502-3p was found to modulate the GABAergic synapse function via modulating the GABA A receptor subunit α-1 (GABRA1) protein.
View Article and Find Full Text PDFCytotechnology
April 2025
Department of Critical Care Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, North Dongmen Road, Luohu District, Shenzhen, 518020 Guangdong China.
This study aimed to investigate the role of circular RNAs (circRNAs) in sepsis-induced acute gastrointestinal injury (AGI), focusing on their potential as biomarkers and their involvement in disease progression. Peripheral blood samples from 14 patients with sepsis-induced AGI and healthy volunteers were collected. RNA sequencing was performed to profile circRNA and miRNA expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!