Perfluoroalkyl acids (PFAAs) are emerging ionic organic pollutants worldwide. Great amounts of extracellular DNA (∼mg/kg) coexist with PFAAs in the environment. However, PFAA-DNA interactions and effects of such interactions have not been well studied. Herein, we used isothermal titration calorimetry (ITC), spectroscopy, and computational simulations to investigate the PFAA-DNA interactions. ITC assays showed that specific binding affinities of PFHxA-DNA, PFOA-DNA, PFNA-DNA, and PFOS-DNA were 5.14 × 10, 3.29 × 10, 1.99 × 10, and 2.18 × 10 L/mol, respectively, which were about 1-2 orders of magnitude stronger than those of PFAAs with human serum albumin. Spectral analysis suggested interactions of PFAAs with adenine (A), cytosine (C), guanine (G), and thymine (T), among which grooves associated with thymine were the major binding sites. Molecular dynamics simulations and quantum chemical calculations suggested that hydrogen bonds and van der Waals forces were the main interaction forces. Such a PFAA-DNA binding decreased the bioavailability of PFAAs in plant seedlings. The findings will help to improve the current understanding of the interaction between PFAAs and biomacromolecules, as well as how such interactions affect the bioavailability of PFAAs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.2c04597DOI Listing

Publication Analysis

Top Keywords

bioavailability pfaas
12
pfaas
9
extracellular dna
8
perfluoroalkyl acids
8
acids pfaas
8
pfaa-dna interactions
8
interactions
6
interactions extracellular
4
dna perfluoroalkyl
4
pfaas decrease
4

Similar Publications

Homegrown eggs from free-ranging laying hens often contain elevated concentrations of perfluoroalkyl acids (PFAAs). However, it is unclear which factors contribute to these relatively large exposure risk scenarios. Moreover, existing bioavailability and modeling concepts of conventional organic pollutants cannot be generalized to PFAAs due to their different physicochemical soil interactions.

View Article and Find Full Text PDF

Binding interaction of environmental DNA with typical emerging perfluoroalkyl acids and its impact on bioavailability.

Sci Total Environ

January 2024

Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China. Electronic address:

As the replacement compounds of perfluoroalkyl acids (PFAAs), emerging PFAAs generally exhibit equal or more hazardous toxicity than legacy PFAAs. Numerous DNA as environmental organic matters coexists with emerging PFAAs, but their interactions and the resulting interaction impacts on the bioavailability of emerging PFAAs remain insufficiently understood. Here, we studied the binding strength and mechanism between DNA and emerging PFAAs (perfluorobutyric acid, perfluorobutylsulfonic acid, and hexafluoropropylene oxide dimer acid) using perfluorooctanoic acid as the control, and further investigated the impacts of DNA binding on the bioavailability of the emerging PFAAs.

View Article and Find Full Text PDF

The coastal area was the major region receiving pollution from land-based sources into the sea. Perfluoroalkyl acids (PFAAs) in famous bays had aroused wide concern, but the importance of underdeveloped or small bays with notable levels of PFAAs were often neglected. Moreover, the roles of suspended sediment (SPS) and water column stratification on PFAA behaviors were unclear.

View Article and Find Full Text PDF

Perfluoroalkyl acids (PFAAs) are emerging ionic organic pollutants worldwide. Great amounts of extracellular DNA (∼mg/kg) coexist with PFAAs in the environment. However, PFAA-DNA interactions and effects of such interactions have not been well studied.

View Article and Find Full Text PDF

Mechanisms Underlying the Impacts of Lipids on the Diverse Bioavailability of Per- and Polyfluoroalkyl Substances in Foods.

Environ Sci Technol

March 2022

Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China.

Food is a major source of human exposure to per- and polyfluoroalkyl substances (PFASs), yet little is known about their bioavailability in food matrices. Here, the relative bioavailability (RBA) of PFASs in foods was determined using an mouse model. Pork, which had the highest lipid content, exhibited the greatest effect on bioavailability by increasing the RBAs of perfluoroalkyl acids (PFAAs) while reducing those of fluorotelomer phosphate diesters (diPAPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!