Recently, brain networks have been widely adopted to study brain dynamics, brain development, and brain diseases. Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases. However, current graph learning techniques have several issues on brain network mining. First, most current graph learning models are designed for unsigned graph, which hinders the analysis of many signed network data (e.g., brain functional networks). Meanwhile, the insufficiency of brain network data limits the model performance on clinical phenotypes' predictions. Moreover, few of the current graph learning models are interpretable, which may not be capable of providing biological insights for model outcomes. Here, we propose an interpretable hierarchical signed graph representation learning (HSGPL) model to extract graph-level representations from brain functional networks, which can be used for different prediction tasks. To further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning. We evaluate this framework on different classification and regression tasks using data from human connectome project (HCP) and open access series of imaging studies (OASIS). Our results from extensive experiments demonstrate the superiority of the proposed model compared with several state-of-the-art techniques. In addition, we use graph saliency maps, derived from these prediction tasks, to demonstrate detection and interpretation of phenotypic biomarkers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10183052PMC
http://dx.doi.org/10.1109/TNNLS.2022.3220220DOI Listing

Publication Analysis

Top Keywords

brain network
16
brain functional
12
functional networks
12
current graph
12
graph learning
12
network data
12
brain
10
hierarchical signed
8
graph
8
signed graph
8

Similar Publications

Real-Time Freezing of Gait Prediction and Detection in Parkinson's Disease.

Sensors (Basel)

December 2024

School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

Freezing of gait (FOG) is a walking disturbance that can lead to postural instability, falling, and decreased mobility in people with Parkinson's disease. This research used machine learning to predict and detect FOG episodes from plantar-pressure data and compared the performance of decision tree ensemble classifiers when trained on three different datasets. Dataset 1 ( = 11) was collected in a previous study.

View Article and Find Full Text PDF

With the advancement of service robot technology, the demand for higher boundary precision in indoor semantic segmentation has increased. Traditional methods of extracting Euclidean features using point cloud and voxel data often neglect geodesic information, reducing boundary accuracy for adjacent objects and consuming significant computational resources. This study proposes a novel network, the Euclidean-geodesic network (EGNet), which uses point cloud-voxel-mesh data to characterize detail, contour, and geodesic features, respectively.

View Article and Find Full Text PDF

Systematic Review of EEG-Based Imagined Speech Classification Methods.

Sensors (Basel)

December 2024

Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

This systematic review examines EEG-based imagined speech classification, emphasizing directional words essential for development in the brain-computer interface (BCI). This study employed a structured methodology to analyze approaches using public datasets, ensuring systematic evaluation and validation of results. This review highlights the feature extraction techniques that are pivotal to classification performance.

View Article and Find Full Text PDF

One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible rehabilitation. Providing remote MI training raises challenges to ensuring an accurate recognition of MI tasks by healthcare providers, in addition to managing computation and communication costs.

View Article and Find Full Text PDF

Adaptive Memory-Augmented Unfolding Network for Compressed Sensing.

Sensors (Basel)

December 2024

School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.

Deep unfolding networks (DUNs) have attracted growing attention in compressed sensing (CS) due to their good interpretability and high performance. However, many DUNs often improve the reconstruction effect at the price of a large number of parameters and have the problem of feature information loss during iteration. This paper proposes a novel adaptive memory-augmented unfolding network for compressed sensing (AMAUN-CS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!