This paper presents an energy-autonomous wireless soil pH and electrical conductance measurement IC powered by soil microbial and photovoltaic energy. The chip integrates highly efficient dual-input, dual-output power management units, sensor readout circuits, a wireless receiver, and a transmitter. The design scavenges ambient energy with a maximal power point tracking mechanism while achieving a peak efficiency of 81.3% and the efficiency is more than 50% over the 0.05-14 mW load range. The sensor readout IC achieves a sensitivity of -8.8 kHz/pH and 6 kHz·m/S, a noise floor of 0.92 x 10 pH value, and 1.4 mS/m conductance. To avoid interference, a 433 MHz transceiver incorporates chirp modulation and on-off keying (OOK) modulation for data uplink and downlink communication. The receiver sensitivity is -80 dBm, and the output transmission power is -4 dBm. The uplink data rate is 100 kb/s using burst chirp modulation and gated Class E PA, while the downlink data rate is 10 kb/s with a self-frequency tracking mixer-first receiver.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBCAS.2022.3222089 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!