Pore-forming proteins (PFPs) comprise the largest single class of bacterial protein virulence factors and are expressed by many human and animal bacterial pathogens. Cells that are attacked by these virulence factors activate epithelial intrinsic cellular defenses (or INCEDs) to prevent the attendant cellular damage, cellular dysfunction, osmotic lysis, and organismal death. Several conserved PFP INCEDs have been identified using the nematode Caenorhabditis elegans and the nematicidal PFP Cry5B, including mitogen-activated protein kinase (MAPK) signaling pathways. Here we demonstrate that the gene nck-1, which has homologs from Drosophila to humans and links cell signaling with localized F-actin polymerization, is required for INCED against small-pore PFPs in C. elegans. Reduction/loss of nck-1 function results in C. elegans hypersensitivity to PFP attack, a hallmark of a gene required for INCEDs against PFPs. This requirement for nck-1-mediated INCED functions cell-autonomously in the intestine and is specific to PFPs but not to other tested stresses. Genetic interaction experiments indicate that nck-1-mediated INCED against PFP attack is independent of the major MAPK PFP INCED pathways. Proteomics and cell biological and genetic studies further indicate that nck-1 functions with F-actin cytoskeleton modifying genes like arp2/3, erm-1, and dbn-1 and that nck-1/arp2/3 promote pore repair at the membrane surface and protect against PFP attack independent of p38 MAPK. Consistent with these findings, PFP attack causes significant changes in the amount of actin cytoskeletal proteins and in total amounts of F-actin in the target tissue, the intestine. nck-1 mutant animals appear to have lower F-actin levels than wild-type C. elegans. Studies on nck-1 and other F-actin regulating proteins have uncovered a new and important role of this pathway and the actin cytoskeleton in PFP INCED and protecting an intestinal epithelium in vivo against PFP attack.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704757PMC
http://dx.doi.org/10.1371/journal.ppat.1010656DOI Listing

Publication Analysis

Top Keywords

pfp attack
20
pfp
9
caenorhabditis elegans
8
pore-forming proteins
8
virulence factors
8
nck-1-mediated inced
8
attack independent
8
pfp inced
8
nck-1
6
f-actin
5

Similar Publications

Acute liver injury (ALI) is a highly fatal condition characterized by sudden massive necrosis of liver cells, inflammation, and impaired coagulation function. Currently, the primary clinical approach for managing ALI involves symptom management based on the underlying causes. The association between excessive reactive oxygen species originating from macrophages and acute liver injury is noteworthy.

View Article and Find Full Text PDF

Pore-forming proteins (PFPs) comprise the largest single class of bacterial protein virulence factors and are expressed by many human and animal bacterial pathogens. Cells that are attacked by these virulence factors activate epithelial intrinsic cellular defenses (or INCEDs) to prevent the attendant cellular damage, cellular dysfunction, osmotic lysis, and organismal death. Several conserved PFP INCEDs have been identified using the nematode Caenorhabditis elegans and the nematicidal PFP Cry5B, including mitogen-activated protein kinase (MAPK) signaling pathways.

View Article and Find Full Text PDF

Ciprofloxacin (CIP) is a broad spectrum synthetic antibiotic drug of fluoroquinolones class. CIP can act as a bidentate ligand forming iron complexes during its degradation in the photo-Fenton process (PFP). This work investigates on PFP for the degradation of CIP to understand the formation mechanism and stability of iron complexes under ultraviolet (UV)-light illumination.

View Article and Find Full Text PDF

Network overload due to massive attacks.

Phys Rev E

May 2018

Department of Physics, Yeshiva University, 500 West 185th Street, New York, New York 10033, USA.

We study the cascading failure of networks due to overload, using the betweenness centrality of a node as the measure of its load following the Motter and Lai model. We study the fraction of survived nodes at the end of the cascade p_{f} as a function of the strength of the initial attack, measured by the fraction of nodes p that survive the initial attack for different values of tolerance α in random regular and Erdös-Renyi graphs. We find the existence of a first-order phase-transition line p_{t}(α) on a p-α plane, such that if pp_{t}, p_{f} is large and the giant component of the network is still present.

View Article and Find Full Text PDF

Introduction: Paroxysmal nocturnal hemoglobinuria (PNH) is a disease characterized by the susceptibility of blood cells to attack by the complement system, inducing extracellular vesicle (EV) production. Thromboembolism is the leading cause of death in this condition. Eculizumab, a humanized monoclonal antibody which inhibits the C5 protein of the complement, reduces the thrombotic risk in PNH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!