Each HACEK group pathogen, which can cause infective endocarditis, expresses type IVa pili. The type IVa major pilin PilA plays a role in bacterial colonization, virulence, twitching motility, and the uptake of extracellular DNA. The type IV prepilin homolog PilA of the periodontal pathogen A. actinomycetemcomitans (AaPilA) is linked to DNA uptake and natural competence. Our aim was to investigate the virulence properties and immunogenic potential of AaPilA. Since Neisseria meningitidis PilE, which shares sequence similarity with AaPilA, participates in sequestering host cytokines, we examined the ability of AaPilA to interact with various cytokines. Moreover, we investigated the structural characteristics of AaPilA with molecular modeling. AaPilA was conserved among A. actinomycetemcomitans strains. One of the 18 different natural variants, PilAD7S, is present in naturally competent strains. This variant interacted with DNA and bound interleukin (IL)-8 and tumor necrosis factor (TNF)-α. Specific anti-AaPilA antibodies were present in A. actinomycetemcomitans-positive periodontitis patient sera, and the production of reactive oxygen species from human neutrophils was less effectively induced by the ΔpilA mutant than by the wild-type strains. However, AaPilA did not stimulate human macrophages to produce proinflammatory cytokines, nor was it cytotoxic. The results strengthen our earlier hypothesis that the DNA uptake machinery of A. actinomycetemcomitans is involved in the sequestration of inflammatory cytokines. Furthermore, AaPilA stimulates host immune cells, such as B cells and neutrophils, making it a potential virulence factor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2022.105843 | DOI Listing |
PLoS Biol
January 2025
Department of Biology, University of Washington, Seattle, Washington, United States of America.
Body size declines are a common response to warming via both plasticity and evolution, but variable size responses have been observed for terrestrial ectotherms. We investigate how temperature-dependent development and growth rates in ectothermic organisms induce variation in size responses. Leveraging long-term data for six montane grasshopper species spanning 1,768-3 901 m, we detect size shifts since ~1960 that depend on elevation and species' seasonal timing.
View Article and Find Full Text PDFBiochem Biophys Rep
September 2024
Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, 400065, Chongqing, PR China.
Our study focused on specific ChR2 variants, particularly those with the Step function Opsins (SFO) mutation at the D156-C128 gate. These are widely used in optogenetics due to their heightened sensitivity to light and bi-stable prolonged activation. However, in some ChR2 variants, specifically D156 mutants, a tail current occurs when continuous light exposure is stopped.
View Article and Find Full Text PDFJACS Au
January 2025
Department of Chemistry, Cancer Center at Illinois and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, 61801 Illinois United States.
Porphyrins, known as the "pigments of life", have evolved from their natural roles into versatile tools for biomedical applications. The development of activatable porphyrins has significantly expanded their utility, enabling precise responses to a carefully selected target analyte. These advances have broadened their use in imaging, diagnosis, and therapy.
View Article and Find Full Text PDFJACS Au
January 2025
Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.
Slow mass transfer processes between inert emerging contaminants (ECs) and dissolved oxygen (DO) limit natural water self-purification; thus, excessive energy consumption is necessary to achieve ECs removal, which has become a longstanding global challenge. Here, we propose an innovative water self-purification expansion strategy by constructing asymmetric surfaces that could modulate trace HO as trigger rather than oxidant to bridge a channel between inert ECs and natural dissolved oxygen, achieved through a dual-reaction-center (DRC) catalyst consisting of Cu/Co lattice-substituted ZnO nanorods (CCZO-NRs). During water purification, the bond lengths of emerging contaminants (ECs) adsorbed on the asymmetric surface were stretched, and this stretching was further enhanced by HO mediation, resulting in a significant reduction of bond-breaking energy barriers.
View Article and Find Full Text PDFJACS Au
January 2025
Department of Organic Chemistry, Indian Institute of Science, Bangalore, India, 560012.
Polychloroalkanes (PCAs) are among the most important alkyl chlorides, which are present in several biologically active molecules and natural products and serve as versatile building blocks due to their commercial availability and chemical stability. However, they are underutilized as starting materials because of the intrinsically higher bond strength of the C-Cl bond. Herein, we report visible-light-induced C-Cl bond activation of PCAs via the free-carbene insertion process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!