Various materials have been used to remove environmental contaminants for decades and have been an effective strategy for environmental cleanups. The current nonrenewable materials used for this purpose could impose secondary hazards and challenges in further downstream treatments. Biomass-based materials present viable, renewable, and sustainable solutions for environmental remediation. Recent biotechnology advances have developed biomaterials with new capacities, such as highly efficient biodegradation and treatment train integration. This review systemically discusses how biotechnology has empowered biomass-derived and bioinspired materials for environmental remediation sustainably and cost-effectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9716580 | PMC |
http://dx.doi.org/10.1016/j.tibtech.2022.09.011 | DOI Listing |
Sci Rep
December 2024
Department of Earth and Planetary Sciences, University of California, Riverside, CA, 92521, USA.
The Salton Sea (SS), California's largest inland lake at 816 square kilometers, formed in 1905 from a levee breach in an area historically characterized by natural wet-dry cycles as Lake Cahuilla. Despite more than a century of untreated agricultural drainage inputs, there has not been a systematic assessment of nutrient loading, cycling, and associated ecological impacts at this iconic waterbody. The lake is now experiencing unprecedented degradation, particularly following the 2003 Quantification Settlement Agreement-the largest agricultural-to-urban water transfer in the United States.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Engineering Management, Hefei College of Finance and Economics, Hefei, 230601, People's Republic of China.
Underground coal excavation has caused a series of geological disasters and environmental problems, especially coal mining subsidence. Backfill-strip mining, which combines the advantages of strip mining and backfill mining, can reduce subsidence and improve the recovery rate of coal. Therefore, predicting the impact of backfill-strip mining on the surface environment and strata structure is essential for the better development of backfill-strip mining technology.
View Article and Find Full Text PDFEnviron Res
December 2024
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil& Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
To develop an efficient and cost-effective adsorbent for phosphate removal from water bodies, this study utilized natural red clay (RC) as a carrier. The modified red clay (MRC) was prepared through three methods: acid modification, high-temperature calcination, and metal loading. The preparation conditions were optimized, and the adsorption effects on phosphate were compared across these different modifications.
View Article and Find Full Text PDFBioresour Technol
December 2024
Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Engineering Research Centre of Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China. Electronic address:
Anammox coupled partial S-driven autotrophic denitrification (PSAD) technology represents an innovative approach for removing nitrogen from wastewater. The research highlighted the crucial role of biofilm on sulfur particles in the nitrogen removal process. Further analysis revealed that sulfur-oxidizing bacteria (SOB) are primarily distributed in the inner layer of the biofilm, while anammox bacteria (AnAOB) are relatively evenly distributed in inner and outer layers, with Thiobacillus and Candidatus Brocadia being the dominant species, respectively.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China. Electronic address:
Phthalate esters (PAEs) are broadly utilized as plasticizers in industrial products, posing a significant threat to ecological security and human health. Lipase is a kind of green biocatalyst with the ability to degrade PAEs, but its application is limited due to its low stability and poor reusability. Herein, lipase from Candida rugosa (CRL) was immobilized into an organic ligand replacement MOFs (MAF-507) and cysteine modification and glutaraldehyde cross-linking were simultaneously performed to synthesize immobilized lipase (Cys-CRL@GA@MAF-507) using a one-pot method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!