This paper presents the first study to quantify and demonstrate the interactions between SBR operating conditions (hydraulic retention time (HRT) and temperature) and soluble microbial product (SMP) generation, as well as the impact of SBR operating conditions and filtration temperature on fouling of membranes used in tertiary treatment. Reducing SBR operating HRT from 20 to 10 h resulted in an increase in SMP concentrations, however, the extent of the increase in high and low molecular weight (MW) organics was different for the effluents from SBRs operated at 8 and 20 °C. Results of SMP modelling demonstrated that a reduction in SBR operating HRT induced decreased utilization associated product (UAP) yields and the influence was greater at the SBR operating temperature of 8 °C. In contrast, biomass associated product (BAP) yields were relatively stable with SBR operating HRT but greater at lower SBR operating temperature. The effects of SBR operating HRT and temperature on fouling indices were also interactive. Reducing SBR operating HRT led to a lower increase in hydraulically reversible resistances and a greater increase in hydraulically irreversible resistances for the effluent from the SBR operated at 8 °C. Reducing the filtration temperature resulted in additional increase in membrane resistances, and the increase was greater at lower SBR operating HRT. The contribution of filtration temperature was observed to have the greatest impact on membrane resistances, followed in importance by SBR operating HRT and temperature. The comprehensive analysis undertaken in the present study provides insights into the interaction between secondary and tertiary operations on fouling development. The results can be employed to understand the limits of fouling control for tertiary treatment under challenging conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.159812 | DOI Listing |
Appl Biochem Biotechnol
January 2025
Department of Biotechnology-CBS, Metropolitan Autonomous University Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, 09310, Mexico City, Mexico.
The presence of antibiotics in wastewater discharges significantly affects the environment, mainly due to the generation of bacterial populations with multiple antibiotic resistances. The cometabolic capacity of nitrifying sludge to simultaneously remove ammonium (NH) and emerging organic contaminants (EOCs), including antibiotics, has been reported. In the present study, the removal capacity of 50 mg ampicillin (AMP)/L by nitrifying cultures associated with biosorption and biotransformation processes was evaluated in a sequencing batch reactor (SBR) system.
View Article and Find Full Text PDFBMC Public Health
January 2025
Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
Background: Depression is a common and debilitating psychiatric disorder worldwide. Recognizing the relationships between depression-related factors can play a significant role in depression management. However, no study has yet used path analysis to examine the mediating role of physical activity, morning wake-up time, and sleep-inducing medication in the relationship between age and depression.
View Article and Find Full Text PDFQuant Imaging Med Surg
December 2024
Department of Nuclear Medicine, Central Hospital of Dalian University of Technology, Dalian, China.
Background: Tc-stannous methylene diphosphonate (Tc-MDP) bone single-photon emission computed tomography/computed tomography (SPECT/CT) imaging plays a crucial role in various clinical applications. Many strategies have been developed to reduce the injection activity and procedure time, improve the patient experience and reduce their anxiety prior to and during SPECT imaging. This study aimed to evaluate the SwiftScan mode and its effect on image quality, and diagnostic performance of malignant skeletal lesions in bone SPECT image.
View Article and Find Full Text PDFChemosphere
February 2025
School of Infrastructure, Indian Institute of Technology Bhubaneswar, Jatni, Argul, Odisha, 752050, India.
Wastewater treatment processes are continually evolving to meet stringent environmental standards while optimizing energy consumption and operational costs. With significant advantages over more traditional approaches, the anammox process has become a hopeful substitute for nitrogen removal. The objective of this work was to evaluate upflow anaerobic sludge blanket reactor (UASBR), moving bed biofilm reactor (MBBR), and sequential batch reactor (SBR) among diverse reactor configurations, in culturing anammox bacteria and achieving nitrogen removal efficiencies.
View Article and Find Full Text PDFJ Neurol
December 2024
Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!