The production of the highly toxic monomethylmercury (MeHg) is heterogenous throughout the water column. Multiple factors have been identified to significantly affect this process, such as an extended anoxic water layer and a deep-water phytoplankton maximum. However, the role of water column heterogeneity on mercury (Hg) cycling is still poorly known, especially concerning the role of zooplankton grazers. Here, four boreal lakes with contrasting characteristics were sampled (i.e., transparency and the presence/absence of fish) at both day and night in order to maximize the heterogeneity in zooplankton abundance both among and within lakes, and to investigate their potential links with Hg vertical heterogeneity. Diel variation of the concentrations of both dissolved total Hg (DTHg) and total Hg (THg) were observed, with night samples significantly higher than day samples. Although this pattern was not related to diel changes in the vertical distribution of zooplankton, results showed that the presence of large copepods (>1.2 mm) and medium-sized (0.6 to 1.2 mm) cladocerans was significantly associated with lower concentrations of DTHg in the water at a given depth, whereas the presence of medium-sized copepods was significantly associated with the concentration of THg. The presence of cladocerans was significantly associated with the ratio between the dissolved MeHg and DTHg (conventionally used as a proxy of methylation potential). Phytoplankton biomass was directly correlated with the concentration of both dissolved and total MeHg and the methylation potential. At the same time, phytoplankton biomass was inversely related to the fraction of DTHg. These results suggest a potential key role of the heterogeneity of biotic factors in the water column, especially of phytoplankton and zooplankton, in the cycling of total Hg and MeHg in boreal lakes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.159793 | DOI Listing |
Heliyon
December 2024
Groupe de Recherche en Écologie de la MRC Abitibi (GREMA), Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, 341 Rue Principale N, Amos, QC, J9T 2L8, Canada.
Lake cyanobacteria can overgrow and form blooms, often releasing life-threatening toxins. Harmful algal blooms (HABs) are typically caused by excess nutrients and high temperatures, but recent observations of cyanobacteria beneath the ice in boreal lakes suggest that the dynamics are more complex. This study investigates the seasonal dynamics of HABs in boreal lakes and identifies their driving factors.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Science and Technology Branch, Environment and Climate Change Canada, 105 rue McGill, Montréal, Québec, H2Y 2E7, Canada. Electronic address:
A major consequence of the Industrial Revolution was the acidification of continental water bodies by sulfates (SO) and nitrates deposited over long-range distance from atmospheric emissions. Regulation policies were implemented in the 1980s leading to the general decrease of SO concentrations in freshwaters and progressive recovery from acidification, a complex process that is still ongoing. The surface water SO decrease has been linked to declining calcium (Ca) and increasing dissolved organic carbon (DOC) concentration.
View Article and Find Full Text PDFSci Total Environ
December 2024
Environment and Climate Change Canada, Burlington, Ontario, Canada. Electronic address:
Sci Total Environ
December 2024
Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
Sci Total Environ
December 2024
Centre for Economic Development, Transport and the Environment for North Ostrobothnia, Oulu, Finland.
Carbon-water interaction studies between aquatic and terrestrial ecosystems are especially needed today in Arctic and Boreal regions, as they are facing drastic warming and precipitation shifts. Despite the importance of streams in the carbon cycle, northern stream-based studies are scarce, owing to a lack of measurements throughout the north, and possibly skewing global greenhouse gas estimates. We used a combination of multiscale measurements to quantify water sources (HO isotope proxies), carbon availability (dissolved in/organic carbon concentrations) and quality (water absorbance, SUVA -index), microbial community structure (16S rRNA sequencing), and carbon dioxide (CO) and methane (CH) fluxes and concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!