1T-TiSe_{2} is one of the most studied charge density wave (CDW) systems, not only because of its peculiar properties related to the CDW transition, but also due to its status as a promising candidate of exciton insulator signaled by the proposed plasmon softening at the CDW wave vector. Using high-resolution electron energy loss spectroscopy, we report a systematic study of the temperature-dependent plasmon behaviors of 1T-TiSe_{2}. We unambiguously resolve the plasmon from phonon modes, revealing the existence of Landau damping to the plasmon at finite momentums, which does not support the plasmon softening picture for exciton condensation. Moreover, we discover that the plasmon lifetime at zero momentum responds dramatically to the band gap evolution associated with the CDW transition. The interband transitions near the Fermi energy in the normal phase are demonstrated to serve as a strong damping channel of plasmons, while such a channel in the CDW phase is suppressed due to the CDW gap opening, which results in the dramatic tunability of the plasmon in semimetals or small-gap semiconductors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.129.187601 | DOI Listing |
Nano Lett
December 2024
Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.
Charge-density waves (CDWs) are correlated states of matter, in which the electronic density is modulated periodically due to electronic and phononic interactions. Often, CDW phases coexist with other correlated states, such as superconductivity, spin-density waves, or Mott insulators. Controlling CDW phases may, therefore, enable the manipulation of the energy landscape of these interacting states.
View Article and Find Full Text PDFNano Lett
December 2024
State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, China.
Two-dimensional 1T-TaS is renowned for its exotic physical properties including superconductivity, Mott physics, flat-band electronics, and charge density wave (CDW) orders. In particular, the CDW phase transitions (PTs) in 1T-TaS attracted extensive research interest, showing prominent potential in electronic devices. However, mechanisms underlying electrically driven PTs remain elusive.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Physics, and State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China.
Proc Natl Acad Sci U S A
December 2024
Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
In unconventional superconductors, coupled charge and lattice degrees of freedom can manifest in ordered phases of matter that are intertwined. In the cuprate family, fluctuating short-range charge correlations can coalesce into a longer-range charge density wave (CDW) order which is thought to intertwine with superconductivity, yet the nature of the interaction is still poorly understood. Here, by measuring subtle lattice fluctuations in underdoped YBaCuO on quasi-static timescales (thousands of seconds) through X-ray photon correlation spectroscopy, we report sensitivity to both superconductivity and CDW.
View Article and Find Full Text PDFNat Commun
November 2024
The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel.
In metallic transition metal dichalcogenides (TMDs), which remain superconducting down to single-layer thickness, the critical temperature T decreases for Nb-based, and increases for Ta-based materials. This contradicting trend is puzzling, impeding the development of a unified theory. Here we study the thickness-evolution of superconducting tunneling spectra in TaSheterostructures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!