1T-TiSe_{2} is one of the most studied charge density wave (CDW) systems, not only because of its peculiar properties related to the CDW transition, but also due to its status as a promising candidate of exciton insulator signaled by the proposed plasmon softening at the CDW wave vector. Using high-resolution electron energy loss spectroscopy, we report a systematic study of the temperature-dependent plasmon behaviors of 1T-TiSe_{2}. We unambiguously resolve the plasmon from phonon modes, revealing the existence of Landau damping to the plasmon at finite momentums, which does not support the plasmon softening picture for exciton condensation. Moreover, we discover that the plasmon lifetime at zero momentum responds dramatically to the band gap evolution associated with the CDW transition. The interband transitions near the Fermi energy in the normal phase are demonstrated to serve as a strong damping channel of plasmons, while such a channel in the CDW phase is suppressed due to the CDW gap opening, which results in the dramatic tunability of the plasmon in semimetals or small-gap semiconductors.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.129.187601DOI Listing

Publication Analysis

Top Keywords

cdw transition
8
plasmon softening
8
plasmon
7
cdw
6
dramatic plasmon
4
plasmon response
4
response charge-density-wave
4
charge-density-wave gap
4
gap development
4
development 1t-tise_{2}
4

Similar Publications

Charge-density waves (CDWs) are correlated states of matter, in which the electronic density is modulated periodically due to electronic and phononic interactions. Often, CDW phases coexist with other correlated states, such as superconductivity, spin-density waves, or Mott insulators. Controlling CDW phases may, therefore, enable the manipulation of the energy landscape of these interacting states.

View Article and Find Full Text PDF

Current-Driven to Thermally Driven Multistep Phase Transition of Charge Density Wave Order in 1T-TaS.

Nano Lett

December 2024

State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, China.

Two-dimensional 1T-TaS is renowned for its exotic physical properties including superconductivity, Mott physics, flat-band electronics, and charge density wave (CDW) orders. In particular, the CDW phase transitions (PTs) in 1T-TaS attracted extensive research interest, showing prominent potential in electronic devices. However, mechanisms underlying electrically driven PTs remain elusive.

View Article and Find Full Text PDF

Tunable Mirror-Symmetric Type-III Ising Superconductivity in Atomically-Thin Natural Van der Waals Heterostructures.

Adv Mater

December 2024

School of Physics, and State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China.

Article Synopsis
  • Van der Waals (vdW) crystals with strong spin-orbit coupling are key for discovering unique 2D superconductors, where new pairing states arise from the combination of various factors like SOC and crystal structure.
  • The study highlights a mirror-symmetry protected Ising pairing state in a heterostructure of SnSe and TaSe, where the arrangement of the lattice helps minimize interference from certain pairing mechanisms.
  • The findings indicate that these vdW heterostructures can enhance the critical temperature under specific magnetic fields, which does not occur in other multilayer configurations due to a loss of mirror symmetry.
View Article and Find Full Text PDF

Understanding the superconductivity and charge density wave interaction through quasi-static lattice fluctuations.

Proc Natl Acad Sci U S A

December 2024

Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.

In unconventional superconductors, coupled charge and lattice degrees of freedom can manifest in ordered phases of matter that are intertwined. In the cuprate family, fluctuating short-range charge correlations can coalesce into a longer-range charge density wave (CDW) order which is thought to intertwine with superconductivity, yet the nature of the interaction is still poorly understood. Here, by measuring subtle lattice fluctuations in underdoped YBaCuO on quasi-static timescales (thousands of seconds) through X-ray photon correlation spectroscopy, we report sensitivity to both superconductivity and CDW.

View Article and Find Full Text PDF

In metallic transition metal dichalcogenides (TMDs), which remain superconducting down to single-layer thickness, the critical temperature T decreases for Nb-based, and increases for Ta-based materials. This contradicting trend is puzzling, impeding the development of a unified theory. Here we study the thickness-evolution of superconducting tunneling spectra in TaSheterostructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!