We present the first measurement of dihadron angular correlations in electron-nucleus scattering. The data were taken with the CLAS detector and a 5.0 GeV electron beam incident on deuterium, carbon, iron, and lead targets. Relative to deuterium, the nuclear yields of charged-pion pairs show a strong suppression for azimuthally opposite pairs, no suppression for azimuthally nearby pairs, and an enhancement of pairs with large invariant mass. These effects grow with increased nuclear size. The data are qualitatively described by the gibuu model, which suggests that hadrons form near the nuclear surface and undergo multiple scattering in nuclei.These results show that angular correlation studies can open a new way to elucidate how hadrons form and interact inside nuclei.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.129.182501DOI Listing

Publication Analysis

Top Keywords

suppression azimuthally
8
hadrons form
8
pairs
5
observation azimuth-dependent
4
azimuth-dependent suppression
4
suppression hadron
4
hadron pairs
4
pairs electron
4
electron scattering
4
scattering nuclei
4

Similar Publications

Vehicular Internet of Things (IoT) is facilitated by efficient RF front ends with suppressed mutual coupling for enhanced spatial diversity and increased channel capacity. This paper presents a mutual coupling suppressed MIMO antenna with a hybrid decoupling technique for Vehicle-to-Everything (V2X) communications, enabling IoT in automotive systems. The single elements consist of a radiating patch with a cleaving circular slot to introduce a capacitive effect on the radiating structure.

View Article and Find Full Text PDF

Azimuth multi-channel synthetic aperture radar (SAR) has always been an important technical means to achieve high-resolution wide-swath (HRWS) SAR imaging. However, in the space-borne azimuth multi-channel SAR system, random phase noise will be produced during the operation of each channel receiver. The phase noise of each channel is superimposed on the SAR echo signal of the corresponding channel, which will cause the phase imbalance between the channels and lead to the generation of false targets.

View Article and Find Full Text PDF

Due to the scheme of fixed-platform beam-steering radar and the space of the blast furnace being subjected to harsh environmental influences, the traditional detection methods of burden surface are limited by geometric distortion, noncoherent clutter, and noise interference, which leads to an increase in the image entropy value and the equivalent number of views, makes the density distribution of burden surface show a diffuse state, and greatly affects the stability and accuracy. In this paper, a new fixed-platform beam-steering radar synthetic aperture radar imaging method (FPBS-SAR) is proposed in the sensory domain of the blast furnace environment. From the perspective of fixed-platform beam-steering radar motion characteristics, the target range-azimuth coupled distance history model under the sub-aperture is established, the azimuthal Doppler variation characteristics of the fixed-platform beam-steering process are analyzed, and the compensation function of the transform domain for geometric disturbance correction is proposed.

View Article and Find Full Text PDF

Reverberation is the main background interference for active sonar detection in shallow sea. Reverberation suppression is crucial for enhancing the performance of active sonar. In this paper, a reverberation suppression method based on low-rank sparse decomposition is proposed.

View Article and Find Full Text PDF

High-resolution and wide-swath (HRWS) synthetic aperture radar (SAR) imaging with azimuth multi-channel always suffers from channel phase and amplitude errors. Compared with spatial-invariant error, the range-dependent channel phase error is intractable due to its spatial dependency characteristic. This paper proposes a novel parameterized channel equalization approach to reconstruct the unambiguous SAR imagery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!